В чем выражается механическая работа. Механическая работа: что это и как она используется

Оборудование

А что это значит?

В физике "механической работой" называют работу какой-нибудь силы (силы тяжести, упругости, трения и т.д.) над телом, в результате действия которой тело перемещается.

Часто слово "механическая" просто не пишется.
Иногда можно встретить выражение " тело совершило работу", что в принципе означает "сила, действующая на тело, совершила работу".

Я думаю - я работаю.

Я иду - я тоже работаю.

Где же здесь механическая работа?

Если под действием силы тело перемещается, то совершается механическая работа.

Говорят, что тело совершает работу.
А точнее будет так: работу совершает сила, действующая на тело.

Работа характеризует результат действия силы.

Cилы, действующие на человека совершают над ним механическую работу, а в результате действия этих сил человек перемещается.

Работа - физическая величина, равная произведению силы, действующей на тело, на путь, совершенный телом под действием силы в направлении этой силы.

А - механическая работа,
F - сила,
S - пройденный путь.

Работа совершается , если соблюдаются одновременно 2 условия: на тело действует сила и оно
перемещается в направлении действия силы.

Работа не совершается (т.е. равна 0),если:
1. Сила действует, а тело не перемещается.

Например: мы действуем с силой на камень, но не можем его сдвинуть.

2. Тело перемещается, а сила равна нулю, или все силы скомпенсированы (т.е. равнодействующая этих сил равна 0).
Например: при движении по инерции работа не совершается.
3. Направление действия силы и направление движения тела взаимно перпендикулярны.

Например: при движении поезда по горизонтали сила тяжести работу не совершает.

Работа может быть положительной и отрицательной

1. Если направление силы и направление движения тела совпадают, совершается положительная работа.

Например: сила тяжести, действуя на падающую вниз каплю воды, совершает положительную работу.

2. Если направление силы и движения тела противоположны, совершается отрицательная работа.

Например: сила тяжести, действующая на поднимающийся воздушный шарик, совершает отрицательную работу.

Если на тело действует несколько сил, то полная работа всех сил равна работе результирующей силы.

Единицы работы

В честь английского ученого Д.Джоуля единица измерения работы получила название 1 Джоуль.

В международной системе единиц (СИ):
[А] = Дж = Н м
1Дж = 1Н 1м

Механическая работа равна 1 Дж, если под действием силы в 1 Н тело перемещается на 1 м в направлении действия этой силы.


При перелете с большого пальца руки человека на указательный
комар совершает работу - 0, 000 000 000 000 000 000 000 000 001 Дж.

Сердце человека за одно сокращение совершает приблизительно 1 Дж работы, что соответствует работе, совершенной при поднятии груза массой 10 кг на высоту 1 см.

ЗА РАБОТУ, ДРУЗЬЯ!

Механическая работа это энергетическая характеристика движения физических тел, имеющая скалярный вид. Она равна модулю силы действующей на тело, умноженной на модуль перемещения вызванного этой силой и на косинус угла между ними.

Формула 1 - Механическая работа.


F - Сила, действующая на тело.

s - Перемещение тела.

cosa - Косинус угла между силой и перемещением.

Данная формула имеет общий вид. В случае если угол между прикладываемой силой и перемещением равен нулю, то косинус равен 1. Соответственно работа будет равна только произведению силы на перемещение. Проще говоря, если тело движется в направлении приложения силы, то механическая работа равна произведению силы на перемещение.

Второй частный случай, когда угол между силой, действующей на тело и его перемещением равен 90 градусов. В этом случае косинус 90 градусов равен нулю, соответственно работа будет равна нулю. И действительно, что происходит мы, прикладываем силу в одном направлении, а тело движется перпендикулярно ему. То есть тело движется явно не под действием нашей силы. Таким образом, работа нашей силы по перемещению тела равна нулю.

Рисунок 1 - Работа сил при перемещении тела.


В случае если на тело действует больше одной силы, то рассчитывают суммарную силу, действующую на тело. И далее ее подставляют в формулу как единственную силу. Тело под действием силы может перемещаться не только прямолинейно, но и по произвольной траектории. В этом случае работа вычисляется для малого участка перемещения, который можно считать прямолинейным и далее суммируется по всему пути.

Работа может быть как положительной, так и отрицательной. То есть если перемещение и сила совпадают по направлению, то работа положительна. А если сила приложена в одном направлении, а тело перемещается в другом, то работа будет отрицательна. Примером отрицательной работы может служить работа силы трения. Так как сила трения направлена встречно движению. Представьте себе, тело движется по плоскости. Сила, приложенная к телу, толкает его в определенном направлении. Эта сила совершает положительную работу по перемещению тела. Но при этом сила трения совершает отрицательную работу. Она тормозит перемещение тела и направлена навстречу его движению.

Рисунок 2 - Сила движения и трения.


Работа в механике измеряется в Джоулях. Один Джоуль это работа совершаемая силой в один Ньютон при перемещении тела на один метр. Кроме направления движения тела может меняться и величина прилагаемой силы. К примеру, при сжатии пружины, сила прилагаемой к ней будет увеличиваться пропорционально пройденному расстоянию. В этом случае работу вычисляют по формуле.

Формула 2 - Работа сжатия пружины.


k - жесткость пружины.

x - координата перемещения.

Энергия - универсальная мера различных форм движения и взаимодействия. Изменение механического движения тела вызывается силами , действующими на него со стороны других тел. Работы силы - процесс обмена энергией между взаимодействующими телами.

Если на тело движуещаеся прямолинейно действует постоянная сила F, которая составляет некоторый угол  с направлением перемещения, то работа этой силы равна произведению проекции силы F s на направление перемещения, умноженной на перемещение точки приложения силы: (1)

В бщем случае сила может изменяться как по модулю, так и по направлению, поэтому скалярная величина элементарной работоы силы F на перемещении dr:

где  - угол между векторами F и dr; ds = |dr| - элементарный путь; F s - проекция вектора F на вектор dr рис. 1

Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути: (2)

где s - пройденный телом. При </2 работа силы положительна, если >/2 работа силы отрицательна. При =/2 (сила перпендикулярна перемещению) работа силы равна нулю.

Единица работы - джоуль (Дж): работа, совершаемая силой 1 Н на пути 1 м (1 Дж=1 Н  м).

Мощность – величина скорости совершения работы: (3)

За время dt сила F совершает работу Fdr, и мощность, развиваемая этой силой, в данный момент ремени:(4)

т. е. равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы; N - величина скалярная.

Единица мощности - ватт (Вт): мощность, при которой за время 1с совершается работа 1Дж (1Вт = 1Дж/с).

Кинетическая и потенциальная энергии

Кинетическая энергия механической системы - энергия механического движения этой системы.

Сила F, действуя на покоящееся тело и вызывая его движение, совершает работу, а изм-е энергии движущегося тела(dT ) возрастает на величину затраченной работы dA . Т. е. dA = dТ

Используя второй закон Ньютона(F=mdV/dt) и ряд др-х преобразований получаем

(5) - кинетическая энергия тела массой m, движущееся со скоростью v .

Кинетическая энергия зависит только от массы и скорости тела.

В разных инерциальных системах отсчета, движущихся друг относительно друга, скорость тела, а следовательно, и его кинетическая энергия будут неодинаковы. Т. о., кинетическая энергия зависит от выбора системы отсчета.

Потенциальная энергия - механическая энергия системы тел, определяемая их вза­имным расположением и характером сил взаимодействия между ними.

В сл-е взаимодействия тел осуществл-х посредством силовых полей(поля упругих, гравитационных сил), работа, совершаемая действующими силами при перемещении тела, не зависит от траектории этого перемещения, а зависит только от начального и конечного положений тела. Такие поля называются потенциальными , а силы, действующие в них, - консервативными . Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной (сила трения). Тело, находясь в потенциальном поле сил, обладает потенциальной энергией П. Работа консервативных сил при элементарном(бесконечно малом) изменении кон­фигурации системы равна приращению потенциальной энергии, взятому со знаком минус: dA= - dП (6)

Работа dA - скалярное произведение силы F на перемещение dr и выражение (6) можно записать: Fdr= -dП (7)

При расчётах потенциальную энер­гию тела в каком-то определенном положении считают равной нулю(выбирают нулевой уровень отсчета), а энергию тела в других положениях отсчитывают от­носительно нулевого уровня.

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна (8)

где высота h отсчитывается от нулевого уровня, для которого П 0 =0.

Т. к. начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение(кинетическая энергия всегда положительна!). Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты(глубина h " ), П= - mgh ".

Потенциальная энергия системы является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.

Полная механическая энергия системы равна сумме кинетической и потенциальной энергий: E=T+П.

Если на тело действует сила, то эта сила совершает работу по перемещению этого тела. Прежде чем дать определение работе при криволинейном движении мате­риальной точки, рассмотрим частные случаи:

В этом случае механиче­ская работа A равна:

A = F s cos =
,

или A = Fcos × s = F S × s ,

где F S – проекция силы на перемеще­ние. В данном случае F s = const , и геометрический смысл работы A – это площадь прямо­угольника, построенного в координатах F S , , s .

Построим график проекции силы на направление перемещения F S как функции перемещения s. Полное перемещение представим как сумму n малых перемещений
. Для ма­лого i -ого перемещения
работа равна

или площади заштрихованной трапеции на рисунке.

Полная механическая работа по перемещению из точки 1 в точку 2 будет равна:


.

Величина, стоящая под интегралом будет представлять элементарную работу по бесконечно малому перемещению
:

­– элементарная работа.

Разбиваем траекторию движения материальной точки на бесконечно малые перемещения и работу силы по перемещению материальной точки из точки 1 в точку 2 определяем как криволинейный интеграл:

работа при криволинейном движении.

Пример 1: Работа силы тяжести
при криволинейном движении материальной точки.


.

Далее как постоянную величину можно вынести за знак интеграла, а интеграл согласно рисунку будет представлять полное перемещение . .

Если обозначить высоту точки 1 от поверхности Земли через , а высоту точки 2 через , то

Мы видим, что в данном случае работа определяется положением материальной точки в начальный и конечный момент времени и не зависит от формы траектории или пути. Работа силы тяжести по замкнутому пути равна нулю:
.

Силы, работа которых на замкнутом пути равна нулю, называется консервативными .

Пример 2 : Работа силы трения.

Это пример неконсервативной силы. Чтобы показать это достаточно рассмотреть элементарную работу силы трения:

,

т.е. работа силы трения всегда отрицательная величина и на замкнутом пути не может быть равной нулю. Работа, совершаемая в единицу времени, называется мощностью . Если за время
совершается работа
, то мощность равна

механическая мощность .

Взяв
в виде

,

получим для мощности выражение:

.

В СИ единицей работы является джоуль:
= 1 Дж = 1 Н1 м, а единицей мощности является ватт: 1 Вт = 1 Дж/с.

Механическая энергия.

Энергия является общей количественной мерой движения взаимодействия всех видов материи. Энергия не исчезает и не возникает из нечего: она лишь может переходить из одной формы в другую. Понятие энергии связывает воедино все явления в природе. В соответствии с различными формами движения материи рассматривают разные виды энергии – механическую, внутреннюю, электромагнитную, ядерную и др.

Понятия энергии и работы тесно связаны друг с другом. Известно, что работа совершается за счет запаса энергии и, наоборот, совершая работу, можно увеличить запас энергии в каком-либо устройстве. Другими словами работа – это количественная мера изменения энергии:

.

Энергия также как и работа в СИ измеряется в джоулях: [E ]=1 Дж.

Механическая энергия бывает двух видов – кинетическая и потенциальная.

Кинетическая энергия (или энергия движения) определяется массами и скоростями рассматриваемых тел. Рассмотрим материальную точку, движущуюся под действием силы . Работа этой силы увеличивает кинетическую энергию материальной точки
. Вычислим в этом случае малое приращение (дифференциал) кинетической энергии:

При вычислении
использован второй закон Ньютона
, а также
- модуль скорости материальной точки. Тогда
можно представить в виде:

-

- кинетическая энергия движущейся материальной точки .

Умножив и разделив это выражение на
, и учитывая, что
, получим

-

- связь между импульсом и кинетической энергией движущейся материальной точки .

Потенциальная энергия (или энергия положения тел) определяется действием на тело консервативных сил и зависит только от положения тела.

Мы видели, что работу силы тяжести
при криволинейном движении материальной точки
можно представить в виде разности значений функции
, взятых в точке 1 и в точке 2 :

.

Оказывается, что всегда, когда силы консервативны, работу этих сил на пути 1
2 можно представить в виде:

.

Функция , которая зависит только от положения тела – называется потенциальной энергией .

Тогда для элементарной работы получим

работа равна убыли потенциальной энергии .

Иначе можно сказать, что работа совершается за счёт запаса потенциальной энергии.

Величину , равную сумме кинетической и потенциальной энергий частицы, называют полной механической энергией тела:

полная механическая энергия тела .

В заключении заметим, что используя второй закон Ньютона
, дифференциал кинетической энергии
можно представить в виде:

.

Дифференциал потенциальной энергии
, как указывали выше, равен:

.

Таким образом, если сила – консервативная сила и отсутствуют другие внешние силы, то , т.е. в этом случае полная механическая энергия тела сохраняется.

1.5. МЕХАНИЧЕСКАЯ РАБОТА И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

Понятие энергии. Механическая энергия. Работа - количественная мера изменения энергии. Работа равнодействующей сил. Работа сил в механике. Понятие мощности. Кинетическая энергия как мера механического движения. Связь изменения ки нетической энергии с работой внутренних и внешних сил. Кинетическая энергия системы в различных системах отсчета. Теорема Кенига.

Энергия - это универсальная мера различных форм движения и взаимодействия. Механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергии , имеющихся в компонентах механической системы . Механическая энергия - это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Работа силы - это количественная характеристика процесса обмена энергией между взаимодействующими телами.

Пусть частица под действием силы совершает перемещение по некоторой траектории 1-2 (рис. 5.1). В общем случае сила в процессе

движения частицы может изменяться как по модулю, так и по направлению. Рассмотрим, как показано на рис.5.1, элементарное перемещение , в пределах которого силу можно считать постоянной.

Действие силы на перемещении характеризуют величиной, равной скалярному произведению , которую называют элементарной работой силы на перемещении . Ее можно представить и в другом виде:

,

где - угол между векторами и - элементарный путь, проекция вектора на векторобозначена (рис. 5.1).

Итак, элементарная работа силы на перемещении

.

Величина - алгебраическая: в зависимости от угла между векторами силы и или от знака проекции вектора силы на вектор перемещения она может быть как положительной, так и отрицательной и, в частности, равной нулю, если т.е. . Единицей измерения работы в вивтеме СИ служит Джоуль, сокращенное обозначение Дж.

Суммируя (интегрируя) выражение (5.1) по всем элементарным участкам пути от точки 1 до точки 2, найдем работу силы на данном перемещении:

видно, что элементарная работа A численно равна площади заштрихованной полоски, а работа А на пути от точки 1 до точки 2 - площади фигуры, ограниченной кривой, ординатами 1 и 2 и осью s. При этом площадь фигуры над осью s берется со знаком плюс (она соответствует положительной работе), а площадь фигуры под осью s - со знаком минус (она соответствует отрицательной работе).

Рассмотрим примеры на вычисление работы. Работа упругой силы где - радиус-вектор частицы А относительно точки О (рис. 5.3).

Переместим частицу A, на которую действует эта сила, по произвольному пути из точки 1 в точку 2. Найдем сначала элементарную работу силы на элементарном перемещении :

.

Скалярное произведение где проекция вектора перемещения на вектор . Эта проекция равна приращению модуля вектора Поэтому и

Теперь вычислим работу данной силы на всем пути, т. е. проинтегрируем последнее выражение от точки 1 до точки 2:

Вычислим работу гравитационной (или аналогичной ей математически силы кулоновской) силы. Пусть в начале вектора (рис. 5.3) находится неподвижная точечная масса (точечный заряд). Определим работу гравитационной (кулоновской) силы при перемещении частицы А из точки 1 в точку 2 по произвольному пути. Сила, действующая на частицу А, может быть представлена так:

где параметр для гравитационного взаимодействия равен , а для кулоновского взаимодействия его значение равно . Вычислим сначала элементарную работу этой силы на перемещении

Как и в предыдущем случае, скалярное произведение поэтому

.

Работа же этой силы на всем пути от точки 1 до точки 2

Рассмотрим теперь работу однородной силы тяжести . Запишем эту силу в виде где орт вертикальной оси z с положительным направлением обозначен (рис.5.4). Элементарная работа силы тяжести на перемещении

Скалярное произведение гдепроекция на орт равная - приращению координаты z. Поэтому выражение для работы приобретает вид

Работа же данной силы на всем пути от точки 1 до точки 2

Рассмотренные силы интересны в том отношении, что их работа, как видно из формул (5.3) - (5.5), не зависит от формы пути между точками 1 и 2, а зависит только от положения этих точек. Эта весьма важная особенность данных сил присуща, однако, не всем силам. Например, сила трения этим свойством не обладает: работа этой силы зависит не только от положения начальной и конечной точек, но и от формы пути между ними.

До сих пор речь шла о работе одной силы. Если же на частицу в процессе движения действуют несколько сил, результирующая которых то нетрудно показать, что работа результирующей силы на некотором перемещении равна алгебраической сумме работ, совершаемых каждой из сил в отдельности на том же перемещении. Действительно,

Введем в рассмотрение новую величину - мощность. Она используется для характеристики скорости, с которой совершается работа. Мощность , по определению, - это работа, совершаемая силой за единицу времени . Если за промежуток времени сила совершает работу , то мощность, развиваемая этой силой в данный момент времени, есть Учитывая, что , получим

Единица мощности в системе СИ - Ватт, сокращенное обозначение Вт.

Таким образом, мощность, развиваемая силой , равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения данной силы. Как и работа, мощность - величина алгебраическая.

Зная мощность силы , можно найти и работу, которую совершает эта сила за промежуток времени t. В самом деле, представив подынтегральное выражение в (5.2) в виде получим

Следует также обратить внимание на одно весьма существенное обстоятельство. Когда говорят о работе (или мощности), то необходимо в каждом конкретном случае четко указывать или представлять себе, работа какой именно силы (или сил) имеется в виду. В ином случае, как правило, неизбежны недоразумения.

Рассмотрим понятие кинетической энергии частицы . Пусть частица массы т движется под действием некоторой силы (в общем случае эта сила может быть результирующей нескольких сил). Найдем элементарную работу, которую совершает эта сила на элементарном перемещении . Имея в виду, что и , запишем

.

Скалярное произведение где проекция вектора на направление вектора . Эта проекция равна - приращению модуля вектора скорости. Поэтому и элементарная работа

Отсюда видно, что работа результирующей силы идет на приращение некоторой величины стоящей в скобках, которую называют кинетической энергией частицы.

а при конечном перемещении из точки 1 в точку 2

(5. 10 )

т. е. приращение кинетической энергии частицы на некотором перемещении равно алгебраической сумме работ всех сил , действующих на частицу на том же перемещении. Если то т. е. кинетическая энергия частицы увеличивается; если же то то есть кинетическая энергия уменьшается.

Уравнение (5.9) можно представить и в другой форме, поделив обе части его на соответствующий промежуток времени dt:

(5. 11 )

Это значит, что производная кинетической энергии частицы по времени равна мощности N результирующей силы, действующей на частицу.

Теперь введем понятие кинетической энергии системы . Рассмотрим в некоторой системе отсчета произвольную систему частиц. Пусть частица системы имеет в данный момент кинетическую энергию . Приращение кинетической энергии каждой частицы равно, согласно (5.9), работе всех сил, действующих на эту частицу: Найдем элементарную работу, которую совершают все силы, действующие на все частицы системы:

где - суммарная кинетическая энергия системы. Заметим, что кинетическая энергия системы - величина аддитивная : она равна сумме кинетических энергий отдельных частей системы независимо от того, взаимодействуют они между собой или нет.

Итак, приращение кинетической энергии системы равно работе, которую совершают все силы, действующие на все частицы системы . При элементарном перемещении всех частиц

(5.1 2 )

а при конечном перемещении

т. е. производная кинетической энергии системы по времени равна суммарной мощности всех сил, действующих на все частицы системы ,

Теорема Кенига: кинетическую энергию K системы частиц можно представить как сумму двух слагаемых: а) кинетической энергии mV c 2 /2 воображаемой материальной точки, масса которой равна массе всей системы, а скорость совпадает со скоростью центра масс; б) кинетической энергии K отн системы частиц, вычисленной в системе центра масс.