Уравнение менделеева клапейрона. Идеальные газы. Законы идеального газа. Уравнение Менделеева - Клапейрона

Оборудование

КЛАПЕЙРОНА УРАВНЕНИЕ

КЛАПЕЙРОНА УРАВНЕНИЕ

(Клапейрона - Менделеева уравнение), зависимость между параметрами идеального газа (давлением р, объёмом V и абс. темп-рой Т), определяющими его состояние: pV=BT, где коэфф. пропорциональности В зависит от массы газа М и его мол. массы. Установлен франц. учёным Б. П. Э. Клапейроном (В. Р. Е. Clapeyron) в 1834. В 1874 Д. И. Менделеев вывел ур-ние для одного моля идеального газа: pV=RT, где R - универсальная . Если мол. газа m, то

pV=(M/m)RT, или PV=NkT,

где N - число ч-ц газа. К. у. представляет собой идеального газа, к-рое объединяет Бойля - Мариотта закон, Гей-Люссака закон и Авогадро закон.

К. у.- наиболее простое ур-ние состояния, применимое с определ. степенью точности к реальным газам при низких давлениях и высоких темп-pax (напр., к атм. воздуху, продуктам сгорания в газовых двигателях), когда они близки по св-вам к идеальным газам.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

КЛАПЕЙРОНА УРАВНЕНИЕ

(Клапейрона - Менделеева уравнение) - зависимость между параметрами идеального газа (давлением p , объёмом V и абс. темп-рой Т), определяющими его состояние: pV=BT, где коэф. пропорциональности В зависит от массы газа М и его мол. массы. Установлен франц. учёным Б. П. Э. Клапейроном (В. Р. Е. Clapeyron) в 1834. В 1874 Д. И. Менделеев вывел ур-ние состояния для одного моля идеального газа; pV=RT, где R - универсальная газовая постоянная. Если мол. масса газа и, то

где N - число частиц газа. К. у. представляет собой уравнение состояния идеального газа, к-рое объединяет Бойля - Мариотта закон, Гей-Люссака закон и Аво-гадро закон.

К. у.- наиб. простое ур-ние состояния, применимое с определ. степенью точности к реальным газам при низких давлениях и высоких темп-рах.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "КЛАПЕЙРОНА УРАВНЕНИЕ" в других словарях:

    Современная энциклопедия

    Клапейрона уравнение - (Клапейрона Менделеева уравнение), зависимость между давлением p, абсолютной температурой T и объемом V идеального газа массы M: pV=BT, где B=M/m (m масса молекулы газа в атомных единицах массы). Установлена французским ученым Б.П.Э. Клапейроном… … Иллюстрированный энциклопедический словарь

    - (Клапейрона Менделеева уравнение) найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа (давлением p, его объемом V и абсолютной температурой T): pV=BT, где B=M/? (М масса газа, ?… … Большой Энциклопедический словарь

    - (Клапейрона Менделеева уравнение), найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа (давлением р, его объёмом V и абсолютной температурой Т): pV = ВТ, где коэффициент B… … Энциклопедический словарь

    Уравнение состояния Статья является частью серии «Термодинамика». Уравнение состояния идеального газа Уравнение Ван дер Ваальса Уравнение Дитеричи Разделы термодинамики Начала термодинамики Уравнен … Википедия

    Клапейрона Менделеева уравнение, найденная Б. П. Э. Клапейроном (1834) зависимость между физическими величинами, определяющими состояние идеального газа: давлением газа р, его объёмом V и абсолютной температурой Т. К. у.… … Большая советская энциклопедия - Фазовые переходы Статья является частью серии «Термодинамика». Понятие фазы Равновесие фаз Квантовый фазовый переход Разделы термодинамики Начала термодинамики Уравнение состояния … Википедия

    КЛАПЕЙРОНА МЕНДЕЛЕЕВА УРАВНЕНИЕ, уравнение состояния (см. УРАВНЕНИЕ СОСТОЯНИЯ) для идеального газа (см. ИДЕАЛЬНЫЙ ГАЗ), отнесенное к 1 молю (см. МОЛЬ) газа. В 1874 Д. И. Менделеев (см. МЕНДЕЛЕЕВ Дмитрий Иванович) на основе уравнения Клапейрона… … Энциклопедический словарь

1. Идеальным газом называется газ, в котором отсутствуют силы межмолекулярного взаимодействия. С достаточной степенью точности газы можно считать идеальными в тех случаях, когда рассматриваются их состояния, далекие от областей фазовых превращений.
2. Для идеальных газов справедливы следующие законы:

а) Закон Бойля - Mаpuomma: при неизменных температуре и массе произведение численных значений давления и объема газа постоянно:
pV = const

Графически этот закон в координатах РV изображается линией, называемой изотермой (рис.1).

б) Закон Гей-Люссака: при постоянном давлении объем данной массы газа прямо пропорционален его абсолютной температуре:
V = V0(1 + at)

где V - объем газа при температуре t, °С; V0 - его объем при 0°С. Величина a называется температурным коэффициентом объемного расширения. Для всех газов a = (1/273°С-1). Следовательно,
V = V0(1 +(1/273)t)

Графически зависимость объема от температуры изображается прямой линией - изобарой (рис. 2). При очень низких температурах (близких к -273°С) закон Гей-Люссака не выполняется, поэтому сплошная линия на графике заменена пунктиром.

в) Закон Шарля: при постоянном объеме давление данной массы газа прямо пропорционально его абсолютной температуре:
p = p0(1+gt)

где р0 - давление газа при температуре t = 273,15 К.
Величина g называется температурным коэффициентом давления. Ее значение не зависит от природы газа; для всех газов = 1/273 °С-1. Таким образом,
p = p0(1 +(1/273)t)

Графическая зависимость давления от температуры изображается прямой линией - изохорой (Рис. 3).

г) Закон Авогадро: при одинаковых давлениях и одинаковых температурах и равных объемах различных идеальных газов содержится одинаковое число молекул; или, что то же самое: при одинаковых давлениях и одинаковых температурах грамм-молекулы различных идеальных газов занимают одинаковые объемы.
Так, например, при нормальных условиях (t = 0°C и p = 1 атм = 760 мм рт. ст.) грамм-молекулы всех идеальных газов занимают объем Vm = 22,414 л.· Число молекул, находящихся в 1 см3 идеального газа при нормальных условиях, называется числом Лошмидта; оно равно 2,687*1019> 1/см3
3. Уравнение состояния идеального газа имеет вид:
pVm = RT

где р, Vm и Т - давление, молярный объем и абсолютная температура газа, а R - универсальная газовая постоянная, численно равная работе, совершаемой 1 молем идеального газа при изобарном нагревании на один градус:
R = 8.31*103 Дж/(кмоль*град)

Для произвольной массы M газа объем составит V = (M/m)*Vm и уравнение состояния имеет вид:
pV = (M/m) RT

Это уравнение называется уравнением Менделеева - Клапейрона.
4. Из уравнения Менделеева - Клапейрона следует, чти число n0 молекул, содержащихся в единице объема идеального газа, равно
n0 = NA/Vm = p*NA /(R*T) = p/(kT)

где k = R/NA = 1/38*1023 Дж/град - постоянная Больцмана, NA - число Авогадро.

Уравнение Менделеева Клапейрона берет свое начало от французского инженера Клапейрона Б. жившего с 1799 по 1864 годы. Так как у параметров состояния идеального газа есть связь, он соединил имеющиеся экспериментальные законы газов и выявил связь в параметрах.

pW/T = const

А Менделеев Д.И. наш русский ученый живший с 1834 по 1907 года, соединил его с законом Авогадро. Из данного закона следует что, если Р и Т одинаковы то моль какого бы ни было газа занимает равный молярный объем. Wm=22.4л. Из чего и следует вывод Менделеева - постоянное значение в правой части уравнения, одинаково для любого газа. Обозначение пишется как R, а называется - универсальная газовая постоянная.

Цифровое выражение R вычисляем путем подстановки. Уравнение Менделеева Клапейрона выглядит как:

PW = nRT

в нем:
Р - газовое давление, W - литровый объем, T - температура, измеряется в кельвинах, n - число молей, R - УГП.

К примеру: Кислород находится в емкости на 2,6 литра, под давлением 2,3атм и 26 градусах С. Неизвестно сколько в емкости содержится молей О 2 ?

По закону газа находим сколько молей n

n = PW/RT из чего: n = (2.3 атм*2,6л)/(0,0821 л*атм/моль*К*299К) = 0,24 моль О 2

Температуру нужно обязательно переводить в кельвины (273 0 С + 26 0 С) = 299К. Во избежание ошибок при решении уравнений, надо обращать внимание на величины в которых даются данные для уравнения Менделеева-Клапейрона Давление может быть в мм рт.столба - переводим в атмосферы (1 атм = 760мм р/с). Если же в паскалях при переводе в атмосферы, важно помнить что 101325 Па = 1атм.

Если производить расчеты где единицы измерения в м 3 и Па. Здесь нужно использовать R = 8,314 Дж/К*моль (постоянная газовая).

Рассмотрим на примере:

Дано: Объем Гелия 16,5 литров, температура - 78 0 С, давление 45,6атм. Какой будет его объем в нормальных условиях? Количество молей? Мы можем быстро выяснить сколько молей n в нем содержится, с помощью Уравнения Менделеева-Клапейрона, но как быть если забылось значение R. В нормальных условиях 1 моль (1атм и 273К) заполняет 22,4 литра. То есть

PW = nRT, из этого следует, R = PW/nT = (1атм*22,4л)/(1 моль*273К) = 0,082

Если сделать так, что бы R сократилась. Получим следующий вариант решения.
Начальные данные: Р 1 = 45,6атм, W 1 = 16.5л, Т 1 =351К.
Конечные данные: Р 2 = 1атм, W 2 = ?, Т 2 =273К.

Мы видим что уравнение ровно справедливо и для исходных и для конечных данных
P 1 W 1 = nRT 1
P 2 W 2 = nRT 2

Для того чтобы узнать объем газа, поделим значения в уравнении
P 1 W 1 /P 2 W 2 = T 1 /T 2 ,
вставим известные нам значения
W 2 = 45.6 * 16.5 * 273 / 351 = 585 литров

Значит в нормальных условиях объем гелия будет 585 литров. Делим 585 на молярный газовый объем в норм. условиях (22,4 л/*моль) получим сколько молей в гелии 585 / 22,4 = 26,1м.

Заметка: Если у Вас проблемы связанные с прокладкой коммуникаций бестраншейным способом, зайдите по ссылке - прокол под газопровод (http://www.prokolgnb.ru) и узнайте как их решить.

Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнение Менделеева - Клапейрона ) - формула, устанавливающая зависимость между давлением, молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

Так как , где-количество вещества, а , где- масса,-молярная масса, уравнение состояния можно записать:

Эта форма записи носит имя уравнения (закона) Менделеева - Клапейрона.

В случае постоянной массы газа уравнение можно записать в виде:

Последнее уравнение называют объединённым газовым законом . Из него получаются законы Бойля - Мариотта, Шарля и Гей-Люссака:

- закон Бойля - Мариотта .

- Закон Гей-Люссака .

- закон Шарля (второй закон Гей-Люссака, 1808 г.).А в форме пропорции этот закон удобен для расчёта перевода газа из одного состояния в другое. С точки зрения химика этот закон может звучать несколько иначе: Объёмы вступающих в реакцию газов при одинаковых условиях (температуре, давлении) относятся друг к другу и к объёмам образующихся газообразных соединений как простые целые числа. Например, 1 объёмводородасоединяется с 1 объёмом хлора, при этом образуются 2 объёма хлороводорода:

1 Объём азота соединяется с 3 объёмами водорода с образованием 2 объёмов аммиака:

- закон Бойля - Мариотта . Закон Бойля - Мариотта назван в честь ирландского физика, химика и философа Роберта Бойля (1627-1691), открывшего его в 1662 г., а также в честь французского физика Эдма Мариотта (1620-1684), который открыл этот закон независимо от Бойля в 1677 году. В некоторых случаях (в газовой динамике) уравнение состояния идеального газа удобно записывать в форме

где -показатель адиабаты, - внутренняя энергия единицы массы вещества.Эмиль Амага обнаружил, что при высоких давлениях поведение газов отклоняется от закона Бойля - Мариотта. И это обстоятельство может быть прояснено на основании молекулярных представлений.

С одной стороны, в сильно сжатых газах размеры самих молекул являются сравнимыми с расстояниями между молекулами. Таким образом, свободное пространство, в котором движутся молекулы, меньше, чем полный объём газа. Это обстоятельство увеличивает число ударов молекул в стенку, так как благодаря ему сокращается расстояние, которое должна пролететь молекула, чтобы достигнуть стенки. С другой стороны, в сильно сжатом и, следовательно, более плотном газе молекулы заметно притягиваются к другим молекулам гораздо большую часть времени, чем молекулы в разреженном газе. Это, наоборот, уменьшает число ударов молекул в стенку, так как при наличии притяжения к другим молекулам молекулы газа движутся по направлению к стенке с меньшей скоростью, чем при отсутствии притяжения. При не слишком больших давлениях более существенным является второе обстоятельство и произведение немного уменьшается. При очень высоких давлениях большую роль играет первое обстоятельство и произведениеувеличивается.

5. Основное уравнение молекулярно-кинетической теории идеальных газов

Для вывода основного уравнения молеку­лярно-кинетической теории рассмотрим одноатомный идеальный газ. Предполо­жим, что молекулы газа движутся хаоти­чески, число взаимных столкновений меж­ду молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, а соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS и вычислим давле­ние, оказываемое на эту площадку. При каждом соударении молекула, движущая­ся перпендикулярно площадке, передает ей импульс m 0 v-(-m 0 v)=2m 0 v, где т 0 - масса молекулы, v - ее скорость.

За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой v Dt .Число этих молекул равно n DSv Dt (n- концентрация молекул).

Необходимо, однако, учитывать, что реально молекулы движутся к площадке

DS под разными углами и имеют различ­ные скорости, причем скорость молекул при каждом соударении меняется. Для упрощения расчетов хаотическое движе­ние молекул заменяют движением вдоль трех взаимно перпендикулярных направ­лений, так что в любой момент времени вдоль каждого из них движется 1 / 3 моле­кул, причем половина молекул (1 / 6) дви­жется вдоль данного направления в одну сторону, половина - в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1 / 6 nDSvDt. При столкновении с пло­щадкой эти молекулы передадут ей им­пульс

DР = 2m 0 v 1 / 6 n DSv Dt = 1 / 3 nm 0 v 2 DS Dt .

Тогда давление газа, оказываемое им на стенку сосуда,

p =DP/(DtDS)= 1 / 3 nm 0 v 2 . (3.1)

Если газ в объеме V содержит N молекул,

движущихся со скоростями v 1 , v 2 , ..., v N , то

целесообразно рассматривать среднюю квадратичную скорость

характеризующую всю совокупность моле­кул газа.

Уравнение (3.1) с учетом (3.2) при­мет вид

р = 1 / 3 пт 0 2 . (3.3)

Выражение (3.3) называется основ­ным уравнением молекулярно-кинетической теории идеальных газов. Точный рас­чет с учетом движения молекул по все-

возможным направлениям дает ту же формулу.

Учитывая, что n = N/V, получим

где Е - суммарная кинетическая энергия поступательного движения всех молекул газа.

Так как масса газа m =Nm 0 , то урав­нение (3.4) можно переписать в виде

pV = 1 / 3 m 2 .

Для одного моля газа т = М (М - моляр­ная масса), поэтому

pV m = 1 / 3 M 2 ,

где V m - молярный объем. С другой сто­роны, по уравнению Клапейрона - Мен­делеева, pV m =RT. Таким образом,

RT= 1 / 3 М 2 , откуда

Так как М = m 0 N A , где m 0 -масса од­ной молекулы, а N А - постоянная Авогад­ро, то из уравнения (3.6) следует, что

где k = R/N A -постоянная Больцмана. Отсюда найдем, что при комнатной темпе­ратуре молекулы кислорода имеют сред­нюю квадратичную скорость 480 м/с, во­дорода - 1900 м/с. При температуре жид­кого гелия те же скорости будут соответ­ственно 40 и 160 м/с.

Средняя кинетическая энергия посту­пательного движения одной молекулы иде­ального газа

) 2 /2 = 3 / 2 kT(43.8)

(использовали формулы (3.5) и (3.7)) пропорциональна термодинамической тем­пературе и зависит только от нее. Из этого уравнения следует, что при T=0 =0,т. е. при 0 К прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Таким образом, термодинамическая температура является мерой средней кинетической энергии по­ступательного движения молекул идеаль­ного газа и формула (3.8) раскрывает молекулярно-кинетическое толкование температуры.

Известно, что разреженные газы подчинены законам Бойля и Ге-Люссака. Закон Бойля гласит, что при изотермическом сжатии газа давление изменяется обратно пропорционально объему. Следовательно, при

Согласно закону Ге-Люссака нагревание газа на при постоянном давлении влечет за собой его расширение на того объема, который он занимает при и при том же неизменном давлении.

Следовательно, если есть объем, занимаемый газом при 0° С и при давлении есть объем, занимаемый этим газом при

и при том же давлении то

Будем изображать состояние газа точкой на диаграмме (координаты какой-либо точки в этой диаграмме указывают численные значения давления и объема или 1 моля газа; на рис. 184 нанесены линии, для каждой из которых это изотермы газа).

Представим себе, что газ был взят в некотором выбранном произвольно состоянии С, при котором его температура есть давление р и занятый им объем

Рис. 184 Изотермы газа по закону Бойля.

Рис. 185 Диаграмма поясняющая вывод уравнения Клапейрона из законов Бойля и Ге-Люссака.

Охладим его до не изменяя давления (рис. 185). На основании закона Ге-Люссака можно написать, что

Теперь, поддерживая температуру будем сжимать газ или, если требуется, предоставим ему возможность расширяться до тех пор, пока его давление не сделается равным одной физической атмосфере. Это давление обозначим через а объем, который в результате окажется занятым газом (при через (точка на рис. 185). На основании закона Бойля

Умножая почленно первое равенство на второе и сокращая на получим:

Это уравнение впервые было выведено Б. П. Клапейроном, выдающимся французским инженером, работавшим в России профессором Института путей сообщения с 1820 по 1830 г. Постоянную величину 27516 нбывают газовой постоянной.

По закону, открытому в 1811 г. итальянским ученым Авогадро, все газы независимо от их химической природы при одинаковом давлении занимают одинаковый объем, если они взяты в количествах, пропорциональных их молекулярному весу. Пользуясь в качестве единицы массы молем (или, что то же, грамм-молекулой, грамм-молем), закон Авогадро можно сформулировать так: при определенной температуре и определенном давлении моль любого газа будет занимать один и тот же объем. Так, например, при и при давлении -моль любого газа занимает

Законы Бойля, Ге-Люссака и Авогадро, найденные экспериментально, позже были выведены теоретически из молекулярно-кинетических представлений (Крёнигом в 1856 г., Клаузиусом в 1857 г. и Максвеллом в 1860 г.). С молекулярно-кинетической точки зрения закон Авогадро (который, подобно другим газовым законам, является точным для идеальных газов и приближенным для реальных) означает, что в равных объемах двух газов содержится одинаковое число молекул, если эти газы находятся при одинаковой температуре и одинаковом давлении.

Пусть есть масса (в граммах) атома кислорода, масса молекулы какого-либо вещества, молекулярный вес этого вещества: Очевидно, что число молекул, содержащихся в моле какого-либо вещества, равно:

т. е. моль любого вещества содержит одно и то же число молекул. Это число равно оно называется числом Авогадро.

Д. И. Менделеев в 1874 г. указал, что благодаря закону Авогадро уравнение Клапейрона, синтезирующее законы Бойля и Ге-Люссака, приобретает наибольшую общность, когда оно отнесено не к обычной весовой единице (грамм или килограмм), а к молю газов. Действительно, поскольку моль любого газа при занимает объем, равный численное значение газовой постоянной для всех газов, взятых в количестве 1 грамм-молекулы, должно быть одинаково независимо от их химической природы.

Газовую постоянную для 1 моля газа обычно обозначают буквой и называют универсальной газовой постоянной:

Если в объеме у (а значит, и содержится не 1 моль газа, а молей, то, очевидно,

Численное значение универсальной газовой постоянной зависит от того, в каких единицах измерены стоящие в левой части уравнения Клапейрона величины Например, если давление измерять в и объем в то отсюда

В табл. 3 (стр. 316) даны значения газовой постоянной, выраженной в различных часто применяемых единицах.

Когда газовая постоянная входит в формулу, все члены которой выражены в калорических единицах энергии, то и газовая постоянная должна быть выражена в калориях; приближенно, точнее

Вычисление универсальной газовой постоянной основано, как мы видели, на законе Авогадро, согласно которому все газы независимо от их химической природы занимают при объем

В действительности объем занимаемый 1 молем газа при нормальных условиях, для большинства газов не вполне точно равен (например, для кислорода и азота он немного меньше, для водорода - немного больше). Если это учесть при вычислении то обнаружится некоторое расхождение в численном значении для различных по химической природе газов. Так, для кислорода вместо получается для азота . Это несовпадение находится в связи с тем, что все вообще газы при обычной плотности не вполне точно следуют законам Бойля и Ге-Люссака.

В технических расчетах вместо измерения массы газа в молях обычно измеряют массу газа в килограммах. Пусть объем содержит газа. Коэффициент в уравнении Клапейрона означает число молей, содержащихся в объеме т. е. в данном случае

Численные значения газовой постоянной выраженной в различных единицах будут в 1000 раз больше числовых значений той же плотности, выраженной в

Поскольку все реальные газы в той или иной мере (и притом неодинаково) отступают от закона Авогадро и в противоречии с этим законом имеют не вполне тождественные объемы для 1 моля при нормальных условиях, то при более точных расчетах пользуются характеристическими газовыми постоянными, полученными не из универсальной газовой постоянной, а вычисленными непосредственно из плотностей газов при нормальных условиях по формуле

где объем газа при Для газов, которые даже при небольших степенях сжатия показывают заметное отклонение от уравнения Клапейрона, вычисление характеристической постоянной проводят методом графической экстраполяции.

В таблице даны значения характеристических газовых постоянных В для случая, когда давление в уравнении Клапейрона выражено в килограммах на а объем выражен в куб. метрах.

(см. скан)

Уравнение Клапейрона является приближенно справедливым не только для химически однородных газов, но также и для смеси газов.