Равновесие по Нэшу. Теория игр для экономистов (Джон Нэш). Равновесие по нэшу в чистых и смешанных стратегиях

Окраска

Теория игр – наука, исследующая математическими методами поведение участников в вероятных ситуациях, связанных с принятием решений. Предметом этой теории являются игровые ситуации с заранее установленными правилами. В ходе игры возможны различные совместные действия – коалиции игроков, конфликты…

Часто отмечают, что в действительности олигополия - это игра характеров - игра, в которой так же, как в шахматах или в покере, каждый игрок должен предугадать действия соперника - его блеф, контрдействия, контрблеф - настолько, насколько это возможно. Поэтому экономисты, занимающиеся теорией олигополии, были восхищены появлением в 1944 году объемистой и высоко математезированной книги под названием “Теории игр и экономическое поведение”.

Стратегия игроков определяется целевой функцией, которая показывает выигрыш или проигрыш участника. Формы этих игр многообразны. Наиболее простая разновидность – игра с двумя участниками. Если в игре участвуют не менее трёх игроков, возможно образование коалиций, что усложняет анализ. С точки зрения платёжной суммы игры делятся на две группы – с нулевой и ненулевой суммами. Игры с нулевой суммой называют так же антагонистическими: выигрыш одних в точности равен проигрышу других, а общая сумма выигрыша равна 0. По характеру предварительной договорённости игры делятся на кооперативные и некооперативные.

Наиболее известный пример некооперативной игры с ненулевой суммой – “дилемма заключённого”.

Итак. С поличным поймали 2х воров, которым предъявлено обвинение в ряде краж. Перед каждым из них встаёт дилемма – признаваться ли в старых (недоказанных) кражах или нет. Если признается только 1 из воров, то признавшийся получает минимальный срок заключения – 1 год, а другой максимальный – 10 лет. Если оба вора одновременно сознаются, то оба получать небольшое снисхождение – 6 лет, если же оба не признаются, то понесут наказание, только за последнюю кражу – 3 года. Заключённые сидят в разных камерах и не могут договориться друг с другом. Перед нам игра с некооперативная с ненулевой (отрицательной) суммой. Характерной чертой этой игры является невыгодность для обоих участников руководствоваться своими частными интересами. “дилемма заключённого” наглядно показывает особенности олигополистического ценообразования.

3.1. Равновесие Нэша

(Названное в честь Джона Форбса Нэша) в теории игр - тип решений игры двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив своё решение в одностороннем порядке, когда другие участники не меняют решения. Такая совокупность стратегий выбранных участниками и их выигрыши называются равновесием Нэша.

Концепция равновесия Нэша (РН) не совсем точно придумана Нэшем, Антуан Августин Курно показал, как найти то, что мы называем равновесием Нэша в игре Курно. Соответственно, некоторые авторы называют его равновесием Нэша-Курно. Однако Нэш первым показал в своей диссертации Некооперативные игры (1950), что равновесия Нэша должны существовать для всех конечных игр с любым числом игроков. До Нэша это было доказано только для игр с 2 участниками с нулевой суммой Джоном фон Нейманом и Оскаром Моргернштерном (1947).

Формальное определение.

Допустим, - игра n лиц в нормальной форме, где - набор чистых стратегий, а - набор выигрышей. Когда каждый игрок выбирает стратегию в профиле стратегий игрок получает выигрыш . метьте, что выигрыш зависит от всего профиля стратегий: не только от стратегии, выбранной самим игроком , но и от чужих стратегий. Профиль стратегий является равновесием по Нэшу, если изменение своей стратегии не выгодно ни одному игроку, то есть для любого :

Игра может иметь равновесие Нэша в чистых стратегиях или в смешанных (то есть при выборе чистой стратегии стохастически с фиксированной частотой). Нэш доказал, что если разрешить смешанные стратегии, тогда в каждой игре n игроков будет хотя бы одно равновесие Нэша.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Равновесие Нэша

Введение

1. Джон Форбс Нэш

1.1 Научные достижения Джона Нэша

2. Равновесие Нэша

2.1 Проблема существования равновесий Нэша

2.2 Проблема единственности равновесия Нэша

2.3 Проблема эффективности равновесия Нэша

2.4 Оптимальные по Парето ситуации

3. Проблемы практического применения

Заключение

Список литературы

Введение

Ученые вот уже почти шестьдесят лет используют теорию игр для расширения анализа стратегических решений, принимаемых фирмы, в частности для того, чтобы ответить на вопрос: почему на некоторых рынках фирмы и стремятся сговориться, тогда, как на других агрессивно конкурируют; использующих фирмы, чтобы не допустить вторжения потенциальных конкурентов; как должны приниматься решения о цене, когда меняются условия п опроса или расходов или, когда новые конкуренты вторгаются на рынок.

Первыми провели исследование в области теории игр Дж-Ф Нейман и О Моргенштерн и описали результаты в книге "Теория игр и экономическое поведение" (1944) Они распространили математические категории этой теории й на экономическую жизнь общества, введя понятие оптимальных стратегий, максимизации ожидаемой полезности, доминирования в игре.

Ученые стремились сформулировать основополагающие критерии рационального поведения участника на рынке с целью достижения благоприятных результатов. Они различали две основные категории игр. Первая - игра с нулевой суммой, предусматривающий такой выигрыш, состоящий исключительно из проигрыша других игроков. В связи с этим пользу одних непременно должна образовываться за счет потерь других игроков, так что общее, а сумма пользы и потерь всегда равна нулю. Вторая категория - игра с положительной суммой, когда индивидуальные игроки соревнуются за выигрыш, состоящий из их же ставок. В обоих случаях игра неизбежно сопряжена с риском, поскольку каждый из ее участников, как считали исследователи, стремится максимально повысить функцию, переменные которой им не контролируются. Если все игроки одинаково умелые, то решающим фактором становится случайность. Но так бывает редко. Почти всегда важную роль в игре играет хитрость, с помощью которой делаются попытки раскрыть замыслы противников и завуалировать свои й намерениях, а затем занять выгодные позиции, которые заставили бы этих противников действовать в ущерб самим себе.

В начале 50-х Джон Нэш разрабатывает методы анализа, в которых все участники или выигрывают, или терпят поражение. Эти ситуации получили названия «равновесие по Нэшу».

1. Джон Форбс Нэш

Очень сильная личность и Нобелевский лауреат Джон Нэш является ученым, который много и плодотворно работал в сфере дифференциальной геометрии и теории игр. Однако не все знают, что математик многие годы своей жизни посвятил трагической борьбе с собственным безумием, граничащим с гениальностью.

«Хорошие научные идеи не приходили бы мне в голову, если бы я думал как нормальные люди.» Д. Нэш

Трудовую деятельность Джон Нэш начал в корпорации "РЭНД" (Санта-Моника, Калифорния), где работал летом 1950 года, а также в 1952 и 1954 годах.

В 1950 - 1951 годах молодой человек преподавал на курсах исчисления (Принстон). В этот период времени он доказал теорему Нэша (о регулярных вложениях). Она является одной из главных в дифференциальной геометрии.

В 1951 - 1952 гг. Джон работает научным ассистентом в Кембридже (Массачусетский технологический институт).

Великому ученому было трудно уживаться в рабочих коллективах. Еще со времен студенчества он прослыл чудаковатым, обособленным, заносчивым, эмоционально холодным человеком (что уже тогда указывало на шизоидную организацию характера). Коллеги и сокурсники, мягко говоря, недолюбливали Джона Нэша за эгоистичность и замкнутость.

1.1 Научные достижения Джона Нэша

Прикладная математика имеет один из разделов - теория игр, который изучает оптимальные стратегии в играх. Эта теория широко применяется в общественных науках, экономике, изучении политико-социальных взаимодействий.

Самое большое открытие Нэша - это выведенная формула равновесия. Она описывает игровую стратегию, в которой выигрыш увеличить не может ни один участник, если изменит свое решение в одностороннем порядке. Например, рабочий митинг (требующий повышения социальных льгот) может завершиться соглашением сторон или же путчем. Для взаимной выгодности две стороны должны использовать идеальную стратегию. Ученый сделал математическое обоснование сочетаний коллективной и личной выгоды, понятий конкуренции. Также он развил "теорию торгов", которая была положена в основу современных стратегий разных сделок (аукционов и т. п.).

Научные изыскания Джона Нэша после исследований в области теории игр не остановились. Ученые считают, что труды, которые математик написал после его первого открытия, даже люди науки не могут понять, очень уж они сложны и для их восприятия.

нэш математик единственность равновесие

2. Равновесие Нэша

Основной математической моделью конфликтной ситуации является игра в нормальной форме. Эта модель задается совокупностью

где множество участников или игроков;

множество допустимых стратегий игрока;

ситуация игры, возникающая в результате выбора всеми игроками своих стратегий;

выигрыш игрока в ситуации.

Важнейшим принципом принятия решений в конфликтных ситуациях является понятие равновесия Нэша.

Равновесием Нэша в игре называется набор стратегий такой, что для каждого игрока его стратегия, входящая в набор, удовлетворяет условию:

Выражение "" читается " при условии ". Оно обозначает набор стратегий, в котором все компоненты, кроме стратегии игрока, совпадают с, а стратегия есть. Данное условие показывает, что стратегия, входящая в набор, является оптимальной для игрока при фиксированных стратегиях всех остальных игроков. Таким образом, можно сказать, что равновесие Нэша это такой набор стратегий, от которого ни одному из игроков не выгодно отклоняться индивидуально.

Обсудим, как можно использовать понятие равновесия Нэша с точки зрения принятия решений. В теории игр, как и во многих других теориях, можно выделить два подхода: нормативный и позитивный. Нормативный подход состоит в том, что теория дает рекомендации, как следует действовать в той или иной конфликтной ситуации. А при позитивном подходе теория пытается описать, как на самом деле происходит взаимодействие между игроками. Изначально теория игр развивалась как нормативная. И сейчас мы обсудим понятие равновесия Нэша именно с такой точки зрения. В этом случае правило принятия решения можно сформулировать следующим образом: в конфликтной ситуации, описываемой игрой в нормальной форме, каждому участнику следует использовать стратегию, которая входит в равновесие Нэша.

Возникают следующие вопросы: всегда ли существует равновесие Нэша и является ли оно единственным? Далее приводятся несколько примеров, которые показывают, что на оба эти вопроса ответ, вообще говоря, отрицательный.

2 .1 Проблема существования равновесий Нэша

Рассмотрим игру двух лиц (), у каждого из которых имеется конечное число стратегий: , . Такие игры двух лиц с конечным числом стратегий у каждого игрока называют биматричными, т.к. для задания функций выигрыша в этом случае удобна биматричная форма записи:

Стратегиям первого игрока соответствуют строки, а стратегиям второго игрока столбцы. Элемент матрицы равен выигрышу игрока, если первый игрок использует свою -тую стратегию, а второй игрок применяет свою -тую стратегию.

Пример игры, в которой не существует равновесий Нэша

Рассмотрим следующую биматричную игру:

Игре с такими матрицами выигрышей можно дать следующую интерпретацию: происходит игра "в монетку": второй игрок загадывает "орел" или "решку", а первый игрок отгадывает. Если он угадывает правильно, то получает от второго игрока "1", иначе отдает "1" второму игроку.

Легко видеть, что в рассматриваемой игре нет равновесий Нэша. Это можно доказать непосредственной проверкой: какую бы ситуацию мы ни взяли, одному из игроков выгодно отклониться, т.к. их интересы противоположны (если выигрывает один, то проигрывает другой) и при любой фиксированной стратегии одного из игроков у другого всегда найдется стратегия, при которой он выигрывает.

2 .2 Проблема единственности равновесия Нэша

Перейдем к ответу на второй вопрос: если существует равновесие Нэша, то является ли оно единственным?

Рассмотрим биматричную игру, называемую "семейный спор". Игроки молодая супружеская пара. Они решают проблему, куда пойти вечером: на футбол или на балет. Муж предпочитает футбол, а жена балет. Но в любом случае им хочется провести вечер вместе, т.к. если они пойдут в разные места, то все удовольствие будет испорчено.

матрица выигрышей жены,

матрица выигрышей мужа.

Легко убедиться, что в этой игре существует два равновесия Нэша: когда оба игрока используют первую стратегию (т.е. супруги идут на балет), либо когда оба игрока используют вторую стратегию (т.е. супруги идут на футбол).

Согласно принципу принятия решений, основанному на понятии равновесия Нэша, игрок должен использовать стратегию, входящую в какое-либо равновесие Нэша. Допустим, каждый игрок выберет то равновесие Нэша, которое ему больше нравится. В данной игре это может привести к самому худшему результату, т.к. жена выберет балет, муж выберет футбол, и в результате они попадут в ситуацию, когда выигрыш у обоих нулевой, т.е. меньше, чем выигрыш каждого игрока в любой из точек равновесия Нэша.

Пример показывает, что необходим какой-то механизм координации при выборе стратегии, если существует несколько равновесий Нэша. Поэтому игры, подобные данному примеру, называют также "играми на координацию".

2 .3 Проблема эффективности равновесия Нэша

Рассмотрим биматричную игру, называющуюся "Дилемма заключенного". (Эта игра достаточно знаменита. Ей посвящено несколько тысяч работ, дающих различные интерпретации этой игры.) Игроками являются два находящихся под следствием человека. У каждого из них есть две стратегии: сознаться в совершенном преступлении или не сознаваться. Следователь предлагает каждому заключенному такие условия: если он сознается, а другой подозреваемый нет, то тогда первого, учитывая его помощь следствию, осудят по минимальному обвинению (на 1 год), а второму дадут максимальный срок (10 лет). Если сознаются оба, то их обоих осудят и дадут срок, соответствующий их преступлению (по 5 лет лишения свободы каждому). Наконец, если оба подследственных не сознаются, то их смогут осудить за недостаточностью улик только по части обвинения (например, за незаконное хранение оружия вместо более тяжкого преступления, которое они на самом деле совершили). В этом случае оба получат по 2 года.

Получаем следующие матрицы выигрышей ("С" сознаться, "Н" не сознаваться):

для первого игрока

для второго игрока

В этой игре существует единственная точка равновесия Нэша обоим сознаться. Но есть ситуация, которая выгоднее обоим игрокам это обоим не сознаваться. Следовательно, точки равновесия Нэша могут быть неэффективны в том смысле, что за счет отклонения обоих игроков от точки равновесия Нэша можно улучшить выигрыши каждого из них.

Описанная в примере игра имеет следующую структуру:

2.4 Оптимальные по Парето ситуации

Чтобы сформулировать обнаруженное свойство неэффективности равновесий Нэша более формально, введем понятие Парето-оптимальной ситуации.

Пусть задана игра в нормальной форме. Набор стратегий называется Парето-оптимальным, если для любого

Фактически оптимальность некоторой ситуации по Парето означает, что за счет изменения стратегий нельзя увеличить выигрыши хотя бы части игроков так, чтобы при этом не уменьшить выигрыши для остальных.

Рассмотренный пример "дилемма заключенного" показывает, что для некоторых игр не существует точек равновесий Нэша, являющихся Парето-оптимальными. В этом случае любая точка равновесия Нэша может быть улучшена за счет совместного выбора стратегий.

3 . Проблемы практического применения

Мы отметили три недостатка понятия равновесия по Нэшу:

равновесий Нэша в игре может не существовать;

равновесие Нэша может быть не единственно;

равновесие Нэша может быть неэффективно.

Но, несмотря на эти недостатки, указанное понятие играет центральную роль в теории принятия решений в конфликтных ситуациях. В 1999 году Джон Нэш, предложивший данное понятие равновесия и известный в основном именно благодаря этому, получил Нобелевскую премию по экономике.

Безусловно, следует указать и на наличие определенных границ применения аналитического инструментария теории игр. В следующих случаях он может быть использован лишь при условии получения дополнительной информации.

Во-первых, это тот случай, когда у игроков сложились разные представления об игре, в которой они участвуют, или, когда они недостаточно информированы о возможностях друг друга. Например, может иметь место неясная информация о платежах конкурента (структуре издержек). Если неполнотой характеризуется не слишком сложная информация, то можно применять опыт подобных случаев с учетом определенных различий.

Во-вторых, теорию игр трудно применять при множестве ситуаций равновесия. Эта проблема может возникнуть даже в ходе простых игр с одновременным выбором стратегических решений.

В-третьих, если ситуация принятия стратегических решений очень сложна, то игроки часто не могут выбрать лучшие для себя варианты. Например, на рынок в разные сроки могут вступить несколько предприятий или реакция уже действующих там предприятий может оказаться более сложной, нежели быть агрессивной или дружественной.

Экспериментально доказано, что при расширении игры до десяти и более этапов игроки уже не в состоянии пользоваться соответствующими алгоритмами и продолжать игру с равновесными стратегиями.

К сожалению, ситуации реального мира зачастую очень сложны и настолько быстро изменяются, что невозможно точно спрогнозировать, как отреагируют конкуренты на изменение тактики. Тем не менее, теория игр полезна, когда требуется определить наиболее важные и требующие учета факторы в ситуации принятия решений в условиях конкурентной борьбы. Эта информация важна, поскольку позволяет учесть дополнительные переменные или факторы, имеющие возможность повлиять на ситуацию, и тем самым повысить эффективность решения.

Заключение

В заключение следует особо подчеркнуть, что теория игр является очень сложной областью знания. При обращении к ней надо соблюдать известную осторожность и четко знать границы применения. Слишком простые толкования таят в себе скрытую опасность. Анализ и консультации на основе теории игр из-за их сложности рекомендуются лишь для особо важных проблемных областей. Опыт показывает, что использование соответствующего инструментария предпочтительно при принятии однократных, принципиально важных плановых стратегических решений, в том числе при подготовке крупных кооперационных договоров.

Где же сегодня применяются открытия Нэша?

Пережив бум в семидесятых-восьмидесятых, теория игр заняла прочные позиции в некоторых отраслях социального знания. Эксперименты, в которых команда Нэша в свое время фиксировала особенности поведения игроков, в начале пятидесятых были расценены как провал. Сегодня они легли в основание «экспериментальной экономики». «Равновесие Нэша» активно используется в анализе олигополий: поведении небольшого количества конкурентов в отдельном секторе рынка.

Кроме того, на Западе теория игр активно используется при выдаче лицензий на вещание или связь: выдающий орган математически высчитывает наиболее оптимальный вариант распределения частот.

Список литературы

1. Васин А. А., Морозов В. В. Теория игр и модели математической экономики. -- М.: МГУ, 2005, 272 с.

2. Воробьёв Н. Н. Теория игр для экономистов-кибернетиков. -- М.: Наука, 1985

3. http://dic.academic.ru/dic.nsf/econ_dict/22119

4. http://economicportal.ru/ponyatiya-all/nash_equilibrium.html

Размещено на Allbest.ru

...

Подобные документы

    Проблемы неравномерного распределения доходов среди населения. Закон распределения Парето: зависимость между размером доходов и количеством людей. Распределение Парето в теории катастроф. Методы обработки данных с распределением с тяжелыми хвостами.

    курсовая работа , добавлен 06.01.2012

    Особенности формирования математической модели принятия решений, постановка задачи выбора. Понятие оптимальности по Парето и его роль в математической экономике. Составление алгоритма поиска парето-оптимальных решений, реализация программного средства.

    контрольная работа , добавлен 11.06.2011

    Разработка математической модели оптимальной расстановки игроков футбольной команды на поле с учетом распределения игровых обязанностей между футболистами и индивидуальных особенностей каждого для достижения максимальной эффективности игры всей команды.

    курсовая работа , добавлен 04.08.2011

    Сравнительная характеристика эффективности и простоты применения зажиточных за Кондорсе правил голосования Копленда и Симпсона, законов Бордо и оптимальности по Парето с целью разработки автоматизированной программы для нахождения победителя выборов.

    курсовая работа , добавлен 20.08.2010

    Условия равновесия в экономической модели. Методы регулирования совокупного спроса. Исследование возможностей получения эффективных равновесий в макроэкономике. Использование монетарной и фискальной политик в процессе регулирования рыночных отношений.

    дипломная работа , добавлен 18.11.2017

    Экономическое равновесие, условия и методы его достижения, ценовые и неценовые причины нарушения. Общая модель рынка по Вальрасу, ее применение в обосновании экономического равновесия, отличия от модели Эрроу-Дебре. Устойчивость конкурентного равновесия.

    курсовая работа , добавлен 19.06.2009

    Цель сервисной деятельности, формы обслуживания потребителей. Анализ эффективности работы организации в сфере обслуживания. Понятие системы массового обслуживания, ее основные элементы. Разработка математической модели. Анализ полученных результатов.

    контрольная работа , добавлен 30.03.2016

    Типы многокритериальных задач. Принцип оптимальности Парето и принцип равновесия по Нэшу при выборе решения. Понятие функции предпочтения (полезности) и обзор методов решения задачи векторной оптимизации с использованием средств программы Excel.

    реферат , добавлен 14.02.2011

    Классическая теория оптимизации. Функция скаляризации Чебышева. Критерий Парето-оптимальность. Марковские процессы принятия решений. Метод изменения ограничений. Алгоритм нахождения кратчайшего пути. Процесс построения минимального остовного дерева сети.

    контрольная работа , добавлен 18.01.2015

    Рассмотрение теоретических и практических аспектов задачи принятия решения. Ознакомление со способами решения с помощью построения обобщенного критерия и отношения доминирования по Парето; примеры их применения. Использование критерия ожидаемого выигрыша.

Возникшая в сороковых годах XX века математическая теория игр чаще всего применяется именно в экономике. Но как с помощью концепции игр смоделировать поведение людей в обществе? Зачем экономисты изучают, в какой угол чаще бьют пенальти футболисты, и как выиграть в «Камень, ножницы, бумагу» в своей лекции рассказал старший преподаватель кафедры микроэкономического анализа ВШЭ Данил Федоровых.

Джон Нэш и блондинка в баре

Игра - это любая ситуация, в которой прибыль агента зависит не только от его собственных действий, но и от поведения остальных участников. Если вы раскладываете дома пасьянс, с точки зрения экономиста и теории игр, это не игра. Она подразумевает обязательное наличие столкновения интересов.

В фильме «Игры разума» о Джоне Нэше, нобелевском лауреате по экономике, есть сцена с блондинкой в баре. В ней показана идея, за которую ученый и получил премию, - это идея равновесия по Нэшу, которое он сам называл управляющей динамикой.

Игра - любая ситуация, в которой выигрыши агентов зависят друг от друга.

Стратегия - описание действий игрока во всех возможных ситуациях.

Исход - комбинация выбранных стратегий.

Итак, с точки зрения теории, игроками в этой ситуации являются только мужчины, то есть те, кто принимает решение. Их предпочтения просты: блондинка лучше брюнетки, а брюнетка лучше, чем ничего. Действовать можно двумя способами: пойти к блондинке или к «своей» брюнетке. Игра состоит из единственного хода, решения принимаются одновременно (то есть нельзя посмотреть, куда пошли остальные, и после походить самому). Если какая-то девушка отвергает мужчину, игра заканчивается: невозможно вернуться к ней или выбрать другую.

Каков вероятный финал этой игровой ситуации? То есть какова ее устойчивая конфигурация, из которой все поймут, что сделали лучший выбор? Во-первых, как правильно замечает Нэш, если все пойдут к блондинке, ничем хорошим это не кончится. Поэтому дальше ученый предполагает, что всем нужно пойти к брюнеткам. Но тогда, если известно, что все пойдут к брюнеткам, ему следует идти к блондинке, ведь она лучше.

В этом и заключается настоящее равновесие - исход, в котором один идет к блондинке, а остальные - к брюнеткам. Может показаться, что это несправедливо. Но в ситуации равновесия никто не может пожалеть о своем выборе: те, кто пойдут к брюнеткам, понимают, что от блондинки они все равно ничего б не получили. Таким образом, равновесие по Нэшу - это конфигурация, при которой никто по отдельности не хочет менять выбранную всеми стратегию. То есть, рефлексируя в конце игры, каждый участник понимает, что даже зная, как походят другие, он сделал бы то же самое. По-другому можно назвать это исходом, где каждый участник оптимальным образом отвечает на действия остальных.

«Камень, ножницы, бумага»

Рассмотрим другие игры на предмет равновесия. Например, в «Камне, ножницах, бумаге» нет равновесия по Нэшу: во всех ее вероятных исходах нет варианта, в котором оба участника были бы довольны своим выбором. Тем не менее, существует Чемпионат мира и World Rock Paper Scissors Society, собирающее игровую статистику. Очевидно, что вы можете повысить свои шансы на победу, если будете что-то знать об обычном поведении людей в этой игре.

Чистая стратегия в игре - это такая стратегия, при которой человек всегда играет одинаково, выбирая одни и те же ходы.

По данным World RPS Society, камень является самым часто выбираемым ходом (37,8%). Бумагу ставят 32,6%, ножницы - 29,6%. Теперь вы знаете, что нужно выбирать бумагу. Однако, если вы играете с тем, кто тоже это знает, вам уже не надо выбирать бумагу, потому что от вас ожидается то же самое. Есть знаменитый случай: в 2005 году два аукционных дома Sotheby“s и Christie”s решали, кому достанется очень крупный лот - коллекция Пикассо и Ван Гога со стартовой ценой в 20 миллионов долларов. Собственник предложил им сыграть в «Камень, ножницы, бумагу», и представители домов отправили ему свои варианты по электронной почте. Sotheby“s, как они позже рассказали, особо не задумываясь, выбрали бумагу. Выиграл Christie”s. Принимая решение, они обратились к эксперту - 11-летней дочери одного из топ-менеджеров. Она сказала: «Камень кажется самым сильным, поэтому большинство людей его выбирают. Но если мы играем не с совсем глупым новичком, он камень не выбросит, будет ожидать, что это сделаем мы, и сам выбросит бумагу. Но мы будем думать на ход вперед, и выбросим ножницы».

Таким образом, вы можете думать на ход вперед, но это не обязательно приведет вас к победе, ведь вы можете не знать о компетенции вашего соперника. Поэтому иногда вместо чистых стратегий правильнее выбирать смешанные, то есть принимать решения случайно. Так, в «Камне, ножницах, бумаге» равновесие, которое мы до этого не нашли, находится как раз в смешанных стратегиях: выбирать каждый из трех вариантов хода с вероятностью в одну третью. Если вы будете выбирать камень чаще, соперник скорректирует свой выбор. Зная это, вы скорректируете свой, и равновесия не выйдет. Но никто из вас не начнет менять поведение, если каждый просто будет выбирать камень, ножницы или бумагу с одинаковой вероятностью. Все потому что в смешанных стратегиях по предыдущим действиям невозможно предугадать ваш следующий ход.

Смешанные стратегии и спорт

Более серьезных примеров смешанных стратегий очень много. Например, куда подавать в теннисе или бить/принимать пенальти в футболе. Если вы ничего не знаете о вашем сопернике или просто постоянно играете против разных, лучшей стратегией будет поступать более-менее случайно. Профессор Лондонской школы экономики Игнасио Паласиос-Уэрта в 2003 году опубликовал в American Economic Review работу, суть которой заключалась в поиске равновесия по Нэшу в смешанных стратегиях. Предметом исследования Паласиос-Уэрта выбрал футбол и в связи с этим просмотрел более 1400 ударов пенальти. Разумеется, в спорте все устроено хитрее, чем в «Камне, ножницах, бумаге»: там учитывается сильная нога спортсмена, попадания в разные углы при ударе со всей силы и тому подобное. Равновесие по Нэшу здесь заключается в расчете вариантов, то есть, к примеру, определении углов ворот, в которые надо бить, чтобы выиграть с большей вероятностью, зная свои слабые и сильные стороны. Статистика по каждому футболисту и найденное в ней равновесие в смешанных стратегиях, показало, что футболисты поступают примерно так, как предсказывают экономисты. Вряд ли стоит утверждать, что люди, которые бьют пенальти, читали учебники по теории игр и занимались довольно непростой математикой. Скорее всего, есть разные способы научиться оптимально себя вести: можно быть гениальным футболистом, и чувствовать, что делать, а можно - экономистом, и искать равновесие в смешанных стратегиях.

В 2008 году профессор Игнасио Паласиос-Уэрта познакомился с Авраамом Грантом, тренером «Челси», который играл тогда в финале Лиги чемпионов в Москве. Ученый написал записку тренеру с рекомендациями по серии пенальти, которые касались поведения вратаря соперника - Эдвина ван дер Сара из «Манчестер Юнайтед». Например, по статистике, он почти всегда отбивал удары на среднем уровне и чаще бросался в естественную для пробивающего пенальти сторону. Как мы определили выше, правильнее все-таки рандомизировать свое поведение с учетом знаний о сопернике. Когда счет по пенальти был уже 6:5, Николя Анелька, нападающий «Челси», должен был забивать. Показывая перед ударом в правый угол, ван дер Сар будто спросил у Анелька, не собирается ли он бить туда.

Суть в том, что все предыдущие удары «Челси» были нанесены именно в правый от пробивающего угол. Мы не знаем точно почему, может быть, из-за консультации экономиста бить в неестественную для них сторону, ведь по статистике к этому менее готов ван дер Сар. Большинство футболистов «Челси» были правшами: ударяя в неестественный для себя правый угол, все они, кроме Терри, забивали. Видимо, стратегия была в том, чтобы Анелька пробил туда же. Но ван дер Сар, похоже, это понял. Он поступил гениально: показал в левый угол дескать «туда собрался бить?», от чего Анелька, наверное, пришел в ужас, ведь его разгадали. В последний момент он принял решение действовать по-другому, ударил в естественную для себя сторону, что и было нужно ван дер Сару, который взял этот удар и обеспечил «Манчестеру» победу. Эта ситуация учит случайному выбору, ведь в ином случае ваше решение может быть просчитано, и вы проиграете.

«Дилемма заключенного»

Наверное, самая известная игра, с которой начинаются университетские курсы о теории игр, - это «Дилемма заключенного». По легенде двух подозреваемых в серьезном преступлении поймали и заперли в разные камеры. Есть доказательство, что они хранили оружие, и это позволяет посадить их на какой-то небольшой срок. Однако доказательств, что они совершили это страшное преступление, нет. Каждому по отдельности следователь рассказывает об условиях игры. Если оба преступника сознаются, оба же сядут на три года. Если сознается один, а подельник будет молчать, сознавшийся выйдет сразу, а второго посадят на пять лет. Если, наоборот, первый не сознается, а второй его сдаст, первый сядет на пять лет, а второй выйдет сразу. Если же не сознается никто, оба сядут на год за хранение оружия.

Равновесие по Нэшу здесь заключается в первой комбинации, когда оба подозреваемых не молчат и оба садятся на три года. Рассуждения каждого таковы: «если я буду говорить, я сяду на три года, если молчать - на пять лет. Если второй будет молчать, мне тоже лучше говорить: не сесть лучше, чем сесть на год». Это доминирующая стратегия: говорить выгодно, независимо от того, что делает другой. Однако в ней есть проблема - наличие варианта получше, ведь сесть на три года хуже, чем сесть на год (если рассматривать историю только с точки зрения участников и не учитывать вопросы морали). Но сесть на год невозможно, ведь, как мы поняли выше, молчать обоим преступникам невыгодно.

Улучшение по Парето

Есть известная метафора про невидимую руку рынка, принадлежащая Адаму Смиту. Он говорил, что если мясник будет сам для себя стараться заработать деньги, от этого будет лучше всем: он сделает вкусное мясо, которое купит булочник на деньги от продажи булок, которые он, в свою очередь, тоже должен будет делать вкусными, чтобы они продавались. Но оказывается, эта невидимая рука не всегда работает, и таких ситуаций, когда каждый действует за себя, а всем плохо, очень много.

Поэтому иногда экономисты и специалисты по теории игр думают не об оптимальном поведении каждого игрока, то есть не о равновесии по Нэшу, а об исходе, при котором будет лучше всему обществу (в «Дилемме» общество состоит из двух преступников). С этой точки зрения, исход эффективен, когда в нем нет улучшения по Парето, то есть невозможно сделать кому-то лучше, не сделав при этом хуже другим. Если люди просто меняются товарами и услугами, это Парето-улучшение: они делают это добровольно, и вряд ли кому-то от этого плохо. Но иногда, если просто дать людям взаимодействовать и даже не вмешиваться, то, к чему они придут, не будет оптимальным по Парето. Это и происходит в «Дилемме заключенного». В ней, если мы даем каждому действовать так, как им выгодно, оказывается, что всем от этого плохо. Всем было бы лучше, если бы каждый действовал не оптимально для себя, то есть молчал.

Трагедия общины

«Дилемма заключенного» - это игрушечная стилизованная история. Вряд ли вы ожидаете оказаться в подобной ситуации, но похожие эффекты есть везде вокруг нас. Рассмотрим «Дилемму» с большим количеством игроков, ее иногда называют трагедией общины. Например, на дорогах - пробки, и я решаю, как ехать на работу: на машине или на автобусе. Это же делают остальные. Если я поеду на машине, и все решат сделать то же самое, будет пробка, но мы доедем с комфортом. Если я поеду на автобусе, пробка-то все равно будет, но ехать я буду некомфортно и не особо быстрее, поэтому такой исход еще хуже. Если же в среднем все ездят на автобусе, то я, сделав то же самое, довольно быстро доеду без пробки. Но если при таких условиях поехать на машине, я тоже доеду быстро, но еще и с комфортом. Итак, наличие пробки не зависит от моих действий. Равновесие по Нэшу здесь - в ситуации, когда все выбирают ехать на машине. Что бы не делали остальные, мне лучше выбрать машину, потому что будет там пробка или нет, неизвестно, но я в любом случае доеду с комфортом. Это доминирующая стратегия, поэтому в итоге все едут на машине, и мы имеем то, что имеем. Задача государства - сделать поездку на автобусе лучшим вариантом хотя бы для некоторых, поэтому появляются платные въезды в центр, парковки и так далее.

Другая классическая история - рациональное незнание избирателя. Представьте, что вы не знаете исход выборов заранее. Вы можете изучить программу всех кандидатов, послушать дебаты и после проголосовать за самого лучшего. Вторая стратегия - прийти на участок и проголосовать как попало или за того, кого чаще показывали по телевизору. Какое поведение оптимально, если от моего голоса никогда не зависит, кто выиграет (а в 140-миллионной стране один голос никогда ничего не решит)? Конечно, я хочу, чтобы в стране был хороший президент, но я же знаю, что никто больше не будет изучать программы кандидатов внимательно. Поэтому не тратить на это время - доминирующая стратегия поведения.

Когда вас призывают прийти на субботник, ни от кого в отдельности не будет зависеть, станет двор чистым или нет: если я выйду один, я не смогу убрать все, или, если выйдут все, то не выйду я, потому что все и без меня уберут. Другой пример - перевозка грузов в Китае, о котором я узнал в замечательной книге Стивена Ландсбурга «Экономист на диване». 100-150 лет назад в Китае был распространен способ перевозки грузов: все складывалось в большой кузов, который тащили семь человек. Заказчики платили, если груз доставлялся вовремя. Представьте, что вы - один из этих шести. Вы можете прилагать усилия, и тянуть изо всех сил, и если все будут так делать, груз доедет вовремя. Если кто-нибудь один так делать не будет, все тоже доедут вовремя. Каждый думает: «Если все остальные тянут как следует, зачем это делать мне, а если все остальные тянут не со всей силы, то я ничего не смогу изменить». В итоге, со временем доставки все было очень плохо, и сами грузчики нашли выход: они стали нанимать седьмого и платить ему деньги за то, чтобы он стегал лентяев плетью. Само наличие такого человека заставляло всех работать изо всех сил, потому что иначе все попадали в плохое равновесие, из которого никому в отдельности с выгодой не выйти.

Такой же пример можно наблюдать в природе. Дерево, растущее в саду, отличается от того, что растет в лесу, своей кроной. В первом случае она окружает весь ствол, во втором - находится только вверху. В лесу это является равновесием по Нэшу. Если бы все деревья договорились и выросли одинаково, они бы поровну распределили количество фотонов, и всем было бы лучше. Но никому в отдельности так делать невыгодно. Поэтому каждое дерево хочет вырасти немного выше окружающих.

Сommitment device

Во многих ситуациях одному из участников игры может понадобиться инструмент, который убедит остальных, что тот не блефует. Он называется commitment device. Например, закон некоторых стран запрещает платить выкуп похитителям людей, чтобы снизить мотивацию преступников. Однако это законодательство часто не работает. Если вашего родственника захватили, и у вас есть возможность спасти его, обойдя закон, вы это сделаете. Представим ситуацию, что закон можно обойти, но родственники оказались бедными и выкуп им платить нечем. У преступника в этой ситуации два пути: отпустить или убить жертву. Убивать он не любит, но тюрьму он не любит больше. Отпущенный пострадавший, в свою очередь, может либо дать показания, чтобы похититель был наказан, либо молчать. Самый лучший исход для преступника: отпустить жертву, которая его не сдаст. Жертва же хочет быть отпущенной и дать показания.

Равновесие здесь в том, что террорист не хочет быть пойманным, а значит, жертва погибает. Но это не равновесие по Парето, потому что существует вариант, при котором всем лучше - жертва на свободе хранит молчание. Но для этого надо сделать так, чтобы молчать ей было выгодно. Где-то я прочитал вариант, когда она может попросить террориста устроить эротическую фотосессию. Если преступника посадят, его подельники выложат фотографии в интернет. Теперь, если похититель останется на свободе - это плохо, но фотографии в открытом доступе - еще хуже, поэтому получается равновесие. Для жертвы это способ остаться в живых.

Другие примеры игр:

Модель Бертрана

Раз уж мы говорим об экономике, рассмотрим экономический пример. В модели Бертрана два магазина продают один и тот же товар, покупая его у производителя по одной цене. Если цены в магазинах одинаковы, то примерно одинакова и их прибыль, ведь тогда покупатели выбирают магазин случайно. Единственное равновесие по Нэшу здесь - продавать товар по себестоимости. Но магазины хотят зарабатывать. Поэтому если один поставит цену 10 рублей, второй снизит ее на копейку, увеличив тем самым свою выручку вдвое, так как к нему уйдут все покупатели. Поэтому участникам рынка выгодно снижать цены, распределяя тем самым прибыль между собой.

Разъезд на узкой дороге

Рассмотрим примеры выбора между двумя возможными равновесиями. Представьте, что Петя и Маша едут навстречу друг другу по узкой дороге. Дорога настолько узкая, что им обоим нужно съехать на обочину. Если они решат повернуть налево или направо от себя, они просто разъедутся. Если же один повернет направо, а другой налево от себя, или наоборот, случится авария. Как выбрать, куда съехать? Чтобы помогать искать равновесие в подобных играх, существуют, например, правила дорожного движения. В России каждому нужно повернуть направо.

В забаве Chiken, когда два человека едут на большой скорости навстречу друг другу, тоже есть два равновесия. Если оба сворачивают на обочину, возникает ситуация, которая называется Chiken out, если оба не сворачивают, то погибают в страшной аварии. Если я знаю, что мой соперник едет прямо, мне выгодно съехать, чтобы выжить. Если я знаю, что мой соперник съедет, то мне выгодно ехать прямо, чтобы после получить 100 долларов. Сложно предсказать, что случится на самом деле, однако, у каждого из игроков есть свой метод выиграть. Представьте, что я закрепил руль так, что его нельзя повернуть, и показал это своему сопернику. Зная, что у меня нет выбора, соперник отскочит.

QWERTY-эффект

Иногда бывает очень сложно перейти из одного равновесия в другое, даже если оно означает пользу для всех. Раскладка QWERTY была создана, чтобы замедлить скорость печати. Поскольку если бы все печатали слишком быстро, головки печатной машинки, которые бьют по бумаге, цеплялись бы друг за друга. Поэтому Кристофер Шоулз разместил часто стоящие рядом буквы на максимально далеком расстоянии. Если вы зайдете в настройки клавиатуры на своем компьютере, вы сможете выбрать там раскладку Dvorak и печатать гораздо быстрее, так как сейчас нет проблемы аналоговых печатных машин. Дворак рассчитывал, что мир перейдет на его клавиатуру, но мы по-прежнему живем с QWERTY. Конечно, если бы мы перешли на раскладку Дворака, будущее поколение было бы нам благодарно. Все мы приложили бы усилия и переучились, в результате вышло бы равновесие, в котором все печатают быстро. Сейчас мы тоже в равновесии - в плохом. Но никому не выгодно быть единственным, кто переучится, потому что за любым компьютером, кроме личного, работать будет неудобно.

Равновесие Нэша – это часть теории игр, её автором выступил американский математик Джон Нэш. Эта теория демонстрирует оптимальную игру «в вакууме»: когда ставить олл-ин или коллировать пуш оппонентов. Важно понимать, что пуша/колла по Нэшу в современных покерных реалиях уже не является единственно верной. Она является оптимальной только при условии, если ваши оппоненты знают об этой стратегии и придерживаются её без отклонений.

Оптимально использовать стратегию пуш/фолда по Нэшу можно только против сильных и понимающих игроков. При минимальном отклонении эффективность этой стратегии значительно снижается. Наиболее выгодным вариантом использования равновесия Нэша является подстройка под оппонентов, и коррекция собственной игры на основе диапазонов соперников.

Где использовать равновесие Нэша?

Диапазоны равновесие Нэша подходят для игры в , Sit&Go и турнирах . Применять эту стратегию следуют, когда ваш стек опускается до 15 больших блайндов или ниже, и ваша игра сводится к одним пуш/фолд решениям. Чтобы отточить свое мастерство игры, вам следует использовать специальное программное обеспечение, которое моделирует такие ситуации: и ICMIZER.

Предположим, что ваш оппонент идет олл-ин, а у вас осталось 14 больших блайндов. По равновесию Нэша, вы можете коллировать с широким диапазоном рук, имея 20 BB, включая карманные тройки, QJ, QT и даже K2s.

Но это диапазон «в вакууме», который не учитывает тип турнира, стадию и разницу в выплатах. Эта стратегия является верной, но только при условии, что игра состоит только из двух решений префлоп: пуш или фолд. В современных реалиях сильные игроки способны сыграть глубокую постфлоп раздачу и со стеком в 15 больших блайндов.

Помимо использования равновесия Нэша, вы всегда можете просто подождать хорошей руки и заколлировать противника. Но если вы точно не знаете, что является хорошей рукой относительно размера вашего стека, то ориентируйтесь на таблицы Нэша.

Диапазон пуша Нэшу

Диапазон колла по Нэшу

Зеленый цвет – эффективный стек от 15 до 20 больших блайндов.

Желтый и темно-желтый цвет – эффективный стек от 6 до 14 больших блайндов.

Красный цвет – эффективный стек от 1 до 5 больших блайндов.

Использование в своей игре равновесия Нэша подойдет игрокам, поскольку предоставит первоначальное понимание о диапазонах пуша или колла для стандартных турнирных ситуаций и поможет достаточно быстро начать покером.

Равновесие Нэша (Nash equilibrium ) - это такая ситуация, при которой ни один из игроков не может увеличить свой выигрыш, в одностороннем порядке меняя свое решение. Другими словами, равновесие Нэша - это положение, при котром стратегия обеих игроков является наилучшей реакцией на действия своего оппонента

Равновесие Нэша в чистых стратегиях для стратегической игры - это такой профиль стратегий, что для всякого агента выполняется следующее условие:

Если в игре каждый из противников применяет только одну и ту же стратегию, то про саму игру в этом случае говорят, что она происходит в чистых стратегиях , а используемые игроком А и игроком В пара стратегий называются чистыми стратегиями .

Определение. В антогонистической игре пара стратегий (А i , В j) называется равновесной или устойчивой, если ни одному из игроков не выгодно отходить от своей стратегии.

Применять чистые стратегии имеет смысл тогда, когда игроки А и В располагают сведениями о действиях друг друга и достигнутых результатах. Если допустим, что хотя бы одна из сторон не знает о поведении противника, то идея равновесия нарушается, и игра ведется бессистемно.

33. Функция Неймана- Моргенштерна в теории игр. Равновесие Байеса-Нэша

Систематическая же математическая теория игр была детально разработана американскими учёными Дж. Нейманом и О. Моргенштерном (1944) как средство математического подхода к явлениям конкурентной экономики. В ходе своего развития И. т. переросла эти рамки и превратилась в общую математическую теорию конфликтов.

Основным в И. т. является понятие игры, являющееся формализованным представлением о конфликте. Точное описание конфликта в виде игры состоит поэтому в указании того, кто и как участвует в конфликте, каковы возможные исходы конфликта, а также кто и в какой форме заинтересован в этих исходах. Участвующие в конфликте стороны называются коалициями действия; доступные для них действия - их стратегиями; возможные исходы конфликта - ситуациями (обычно каждая ситуация понимается как результат выбора каждой из коалиций действия некоторой своей стратегии); стороны, заинтересованные в исходах конфликта, - коалициями интересов; их интересы описываются предпочтениями тех или иных ситуаций (эти предпочтения часто выражаются численными выигрышами). Конкретизация перечисленных объектов и связей между ними порождает разнообразные частные классы игр.

Определить оптимальную стратегию можно:

  • Равновесие Байеса-Нэша: если определено статистическое распределение встречаемого поведения (например, 33 % «око за око», 33 % всегда обманывают и 33 % всегда сотрудничают), то стратегию можно вычислить математически . Этим детально занимается теория эволюционной динамики.