Построение сечения по двум точкам. Параллельные сечения

Фасада

Практическое занятие: «Параллелепипед. Построение сечений параллелепипеда ».

1. Цель практической работы : . Закрепить знания теоретического материала о многогранниках, навыки решения задач на построение сечений, умения анализировать чертеж.

2.Дидактическое оснащение практической работы : АРМ, модели и развёртки многогранников, измерительные инструменты, ножницы, клей, плотная бумага.

Время:2 часа

Задания к работе:

Задание 1

Построить сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки M, N, P, лежащие, на прямых, соответственно, A 1 B 1, А D , DC

Образец и последовательность решения задачи:

1.Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проходящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.

2.Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.

3.Так как точка M также принадлежит плоскости сечения и пересекает прямую АА 1 в некоторой точке Х.

4.Точки X и N лежат в одной плоскости грани АА 1 D 1 D, соединим их и получим прямую XN.

5.Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A 1 B 1 C 1 D 1 , параллельную прямой NP. Эта прямая пересечет сторону В 1 С 1 в точке Y.

6.Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.

Задание 2

Вариант1. Построить сечение параллелепипеда АВСDА1В1С1D1 плоскостью, заданной следующими точками M , N и P

1 Уровень: Все три точки лежит на рёбрах, выходящих из вершиныА

2 Уровень. M лежит в грани AA1D1D, N лежит в грани АА1В1В, P лежит в грани СС1D1D.

3 Уровень. M лежит на диагонали B1D, N лежит на диагонали АС1, P лежит на ребре С1D1.

Вариант2. Построить сечение параллелепипеда АВСDА1В1С1D1 плоскостью, проходящей через прямую DQ, где точка Q лежит на ребре СС1 и точку Р, заданную следующим образом

1 Уровень: Все три точки лежит на рёбрах, выходящих из вершиныС

2 Уровень: М лежит на продолжении ребра А1В1, причем точка А1 находится между точками В1 и Р.

3 Уровень: Р лежит на диагонали В1D

Порядок выполнения работы:

1.Изучите теоретический материал по темам:

Параллелепипед.

Прямой параллелепипед.

Наклонный параллелепипед.

Противолежащие грани параллелепипеда.

Свойства диагоналей параллелепипеда.

П онятие секущей плоскости и правила её построения.

Какие виды многоугольников получаются в сечении куба и параллелепипеда.

2. Постройте параллелепипед ABCDA 1 B 1 C 1 D 1

3.Разберите решение задачи № 1

4.Последовательно постройте сечение параллелепипеда ABCDA 1 B 1 C 1 D 1 плоскостью, проходящей через точки P, Q, R задачи № 1.

5.Постройте ещё три параллелепипеда и выделите на них сечения к задачам 1, 2, и 3 уровней

Критерии оценивания :

Литература: Атанасян Л.С. Геометрия: Учебник для 10-11 кл. общеобразоват. учреждений. Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кодомцев и др. - М.: Просвещение, 2010г Зив Б.Г. Задачи по геометрии: Пособие для учащихся 7-11 кл. общеобразоват. учреждений. / Б.Г. Зив, В.М. Мейлер, А.Г. Баханский. - М.: Просвещение, 2010. В. Н. ЛитвиненкоЗадачи на развитие пространственных представлений. Книга для учителя. - М.: Просвещение, 2010г

Дидактический материал к заданию практического занятия

К задаче № 1:

Некоторые возможные сечения:

Построить сечения параллелепипеда плоскостью, проходящей через данные точки

Задачи на построение сечений куба плоскостью, как правило, проще чем, например, задачи на сечения пирамиды.

Провести прямую можем через две точки, если они лежат в одной плоскости. При построении сечений куба возможен еще один вариант построения следа секущей плоскости. Поскольку две параллельные плоскости третья плоскость пересекает по параллельным прямым, то, если в одной из граней уже построена прямая, а в другой есть точка, через которую проходит сечение, то можем провести через эту точку прямую, параллельную данной.

Рассмотрим на конкретных примерах, как построить сечения куба плоскостью.

1) Построить сечение куба плоскостью, проходящей через точки A, C и M.

Задачи такого вида — самые простые из всех задач на построение сечений куба. Поскольку точки A и C лежат в одной плоскости (ABC), то через них можем провести прямую. Ее след — отрезок AC. Он невидим, поэтому изображаем AC штрихом. Аналогично соединяем точки M и C, лежащие в одной плоскости (CDD1), и точки A и M, которые лежат в одной плоскости (ADD1). Треугольник ACM — искомое сечение.

2) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Здесь только точки M и N лежат в одной плоскости (ADD1), поэтому проводим через них прямую и получаем след MN (невидимый). Поскольку противолежащие грани куба лежат в параллельных плоскостях, то секущая плоскость пересекает параллельные плоскости (ADD1) и (BCC1) по параллельным прямым. Одну из параллельных прямых мы уже построили — это MN.

Через точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1).

Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый).

Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую.

Пятиугольник MNLPS — искомое сечение.

3) Построить сечение куба плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскости (ВСС1), поэтому через них можно провести прямую. Получаем след MN (видимый). Плоскость (BCC1) параллельна плоскости (ADD1),поэтому через точку P, лежащую в (ADD1), проводим прямую, параллельную MN. Она пересекает ребро AD в точке E. Получили след PE (невидимый).

Больше нет точек, лежащей в одной плоскости, или прямой и точки в параллельных плоскостях. Поэтому надо продолжить одну из уже имеющихся прямых, чтобы получить дополнительную точку.

Если продолжать прямую MN, то, поскольку она лежит в плоскости (BCC1), нужно искать точку пересечения MN с одной из прямых этой плоскости. С CC1 и B1C1 точки пересечения уже есть — это M и N. Остаются прямые BC и BB1. Продолжим BC и MN до пересечения в точке K. Точка K лежит на прямой BC, значит, она принадлежит плоскости (ABC), поэтому через нее и точку E, лежащую в этой плоскости, можем провести прямую. Она пересекает ребро CD в точке H. EH -ее след (невидимый). Поскольку H и N лежат в одной плоскости (CDD1), через них можно провести прямую. Получаем след HN (невидимый).

Плоскости (ABC) и (A1B1C1) параллельны. В одной из них есть прямая EH, в другой — точка M. Можем провести через M прямую, параллельную EH. Получаем след MF (видимый). Проводим прямую через точки M и F.

Шестиугольник MNHEPF — искомое сечение.

Если бы мы продолжили прямую MN до пересечения с другой прямой плоскости (BCC1), с BB1, то получили бы точку G, принадлежащую плоскости (ABB1). А значит, через G и P можно провести прямую, след которой PF. Далее — проводим прямые через точки, лежащие в параллельных плоскостях, и приходим к тому же результату.

Работа с прямой PE дает то же сечение MNHEPF.

4) Построить сечение куба плоскостью, проходящей через точку M, N, P.

Здесь можем провести прямую через точки M и N, лежащие в одной плоскости (A1B1C1). Ее след — MN (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.

Продолжим прямую MN. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и M. Еще две прямые этой плоскости — A1B1 и B1C1. Точка пересечения A1B1 и MN — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости (ABB1), а значит, через нее и точку P, лежащую в этой же плоскости, можно провести прямую. Прямая PS пересекает ребро AA1 в точке E. PE — ее след (видимый). Через точки N и E, лежащие в одной плоскости (ADD1), можно провести прямую, след которой — NE (невидимый). В плоскости (ADD1) есть прямая NE, в параллельной ей плоскости (BCC1) — точка P. Через точку P можем провести прямую PL, параллельную NE. Она пересекает ребро CC1 в точке L. PL — след этой прямой (видимый). Точки M и L лежат в одной плоскости (CDD1), значит, через них можно провести прямую. Ее след — ML (невидимый). Пятиугольник MLPEN — искомое сечение.

Можно было продолжать прямую NM в обе стороны и искать ее точки пересечения не только с прямой A1B1, но и с прямой B1C1, также лежащей в плоскости (A1B1C1). В этом случае через точку P проводим сразу две прямые: одну — в плоскости (ABB1) через точки P и S, а вторую — в плоскости (BCC1), через точки P и R. После чего остается соединить лежащие в одной плоскости точки: M c L, E — с N.

Как известно, любой экзамен по математике содержит в качестве основной части решение задач. Умение решать задачи – основной показатель уровня математического развития.

Достаточно часто на школьных экзаменах, а так же на экзаменах, проводимых в ВУЗах и техникумах, встречаются случаи, когда ученики, показывающие хорошие результаты в области теории, знающие все необходимые определения и теоремы, запутываются при решении весьма простых задач.

За годы обучения в школе каждый ученик решает большое число задач, но при этом для всех учеников задачи предлагаются одни и те же. И если некоторые ученики усваивают общие правила и методы решения задач, то другие, встретившись с задачей незнакомого вида, даже не знают, как к ней подступиться.

Одной из причин такого положения является то, что если одни ученики вникают в ход решения задачи и стараются осознать и понять общие приёмы и методы их решения, то другие не задумываются над этим, стараются как можно быстрее решить предложенные задачи.

Многие учащиеся не анализируют решаемые задачи, не выделяют для себя общие приёмы и способы решения. В таких случаях задачи решаются только ради получения нужного ответа.

Так, например, многие учащиеся даже не знают, в чём суть решения задач на построение. А ведь задачи на построение являются обязательными задачами в курсе стереометрии. Эти задачи не только красивы и оригинальны в методах своего решения, но и имеют большую практическую ценность.

Благодаря задачам на построение развивается способность мысленно представлять себе ту или иную геометрическую фигуру, развивается пространственное мышление, логическое мышление, а так же геометрическая интуиция. Задачи на построение развивают навыки решения проблем практического характера.

Задачи на построения не являются простыми, так как единого правила или алгоритма для их решения не существует. Каждая новая задача уникальна и требует индивидуального подхода к решению.

Процесс решения любой задачи на построение – это последовательность некоторых промежуточных построений, приводящих к цели.

Построение сечений многогранников базируется на следующих аксиомах:

1) Если две точки прямой лежат в некоторой плоскости, то и вся прямая лежит в данной плоскости;

2) Если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Теорема: если две параллельные плоскости пересечены третьей плоскостью, то прямые пересечения параллельны.

Построить сечение многогранника плоскостью, проходящей через точки А, В и С. Рассмотрим следующие примеры.

Метод следов

I. Построить сечение призмы плоскостью, проходящей через данную прямую g (след) на плоскости одного из оснований призмы и точку А.

Случай 1.

Точка А принадлежит другому основанию призмы (или грани, параллельной прямой g) – секущая плоскость пересекает это основание (грань) по отрезку ВС, параллельному следу g.

Случай 2.

Точка А принадлежит боковой грани призмы:

Отрезок ВС прямой AD и есть пересечение данной грани с секущей плоскостью.


Случай 3.

Построение сечения четырехугольной призмы плоскостью, проходящей через прямую g в плоскости нижнего основания призмы и точку А на одном из боковых ребер.

II. Построить сечение пирамиды плоскостью, проходящей через данную прямую g (след) на плоскости основания пирамиды и точку А.

Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью.

Случай 1.

Если точка А принадлежит грани, параллельной прямой g, то секущая плоскость пересекает эту грань по отрезку ВС, параллельному следу g.

Случай 2.

Если точка А, принадлежащая сечению, расположена на грани, не параллельной грани следу g, то:

1) строится точка D, в которой плоскость грани пересекает данный след g;

2) проводится прямая через точки А и D.

Отрезок ВС прямой АD и есть пересечение данной грани с секущей плоскостью.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с секущей плоскостью. И т. д.

Случай 3.

Построение сечения четырехугольной пирамиды плоскостью, проходящей через сторону основания и точку А на одном из боковых ребер.

Задачи на построение сечений через точку на грани

1. Построить сечение тетраэдра АВСD плоскостью, проходящей через вершину С и точки М и N на гранях АСD и АВС соответственно.

Точки С и М лежат на грани АСD, значит, и прямая СМ лежит в плоскости этой грани (рис. 1).

Пусть Р – точка пересечения прямых СМ и АD. Аналогично, точки С и N лежат в грани АСВ, значит прямая СN лежит в плоскости этой грани. Пусть Q – точка пересечения прямых СN и АВ. Точки Р и Q принадлежат и плоскости сечения, и грани АВD. Поэтому отрезок РQ – сторона сечения. Итак, треугольник СРQ – искомое сечение.

2. Построить сечение тетраэдра АВСD плоскостью MPN, где точки M, N, P лежат соответственно на ребре АD, в грани ВСD и в грани АВС, причем MN не параллельно плоскости грани АВС (рис. 2) .

Остались вопросы? Не знаете, как построить сечение многогранника?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

А вы знаете, что называется сечением многогранников плоскостью? Если вы пока сомневаетесь в правильности своего ответа на этот вопрос, то можете довольно просто себя проверить. Предлагаем пройти небольшой тест, представленный ниже.

Вопрос. Назовите номер рисунка, на котором изображено сечение параллелепипеда плоскостью?

Итак, правильный ответ – на рисунке 3.

Если вы ответите правильно, это подтверждает то, что вы понимаете, с чем имеете дело. Но, к сожалению, даже правильный ответ на вопрос-тест не гарантирует вам наивысших отметок на уроках по теме «Сечения многогранников». Ведь самым сложным является не распознавание сечений на готовых чертежах, хотя это тоже очень важно, а их построении.

Для начала сформулируем определение сечения многогранника. Итак, сечением многогранника называют многоугольник, вершины которого лежат на ребрах многогранника, а стороны – на его гранях.

Теперь потренируемся быстро и безошибочно строить точки пересечения данной прямой с заданной плоскостью. Для этого решим следующую задачу.

Построить точки пересечения прямой MN с плоскостями нижнего и верхнего оснований треугольной призмы ABCA 1 B 1 C 1 , при условии, что точка M принадлежит боковому ребру CC 1 , а точка N – ребру BB 1 .

Начнем с того, что продлим на чертеже прямую MN в обе стороны (рис. 1). Затем, чтобы получить необходимые по уловию задачи точки пересечения, продлеваем и прямые, лежащие в верхнем и нижнем основаниях. И вот наступает самый сложный момент в решении задачи: какие именно прямые в обоих основаниях необходимо продлить, так как в каждом из них имеется по три прямые.

Чтобы правильно сделать заключительный шаг построения, необходимо определить, какие из прямых оснований находятся в той же плоскости, что и интересующая нас прямая MN. В нашем случае – это прямая CB в нижнем и C 1 B 1 в верхнем основаниях. И именно их и продлеваем до пересечения с прямой NM (рис. 2).

Полученные точки P и P 1 и есть точки пересечения прямой MN с плоскостями верхнего и нижнего оснований треугольной призмы ABCA 1 B 1 C 1 .

После разбора представленной задачи можно перейти непосредственно к построению сечений многогранников. Ключевым моментом здесь будут рассуждения, которые и помогут прийти к нужному результату. В итоге постараемся в итоге составить шаблон, который будет отражать последовательность действий при решении задач данного типа.

Итак, рассмотрим следующую задачу. Построить сечение треугольной призмы ABCA 1 B 1 C 1 плоскостью, проходящей через точки X, Y, Z, принадлежащие ребрам AA 1 , AC и BB 1 соответственно.

Решение: Выполним чертеж и определим, какие пары точек лежат в одной плоскости.

Пары точек X и Y, X и Z можно соединить, т.к. они лежат в одной плоскости.

Построим дополнительную точку, которая будет лежать в той же грани, что и точка Z. Для этого продлим прямые XY и СС 1 , т.к. они лежат в плоскости грани AA 1 C 1 C. Назовем полученную точку P.

Точки P и Z лежат в одной плоскости – в плоскости грани CC 1 B 1 B. Поэтому можем их соединить. Прямая PZ пересекает ребро CB в некоторой точке, назовем ее T. Точки Y и T лежат в нижней плоскости призмы, соединяем их. Таким образом, образовался четырехугольник YXZT, а это и есть искомое сечение.

Подведем итог. Чтобы построить сечение многогранника плоскостью, необходимо:

1) провести прямые через пары точек, лежащих в одной плоскости.

2) найти прямые, по которым пересекаются плоскости сечения и грани многогранника. Для этого нужно найти точки пересечения прямой, принадлежащей плоскости сечения, с прямой, лежащей в одной из граней.

Процесс построения сечений многогранников сложен тем, что в каждом конкретном случае он различен. И никакая теория не описывает его от начала и до конца. На самом деле есть только один верный способ научиться быстро и безошибочно строить сечения любых многогранников – это постоянная практика. Чем больше сечений вы построите, тем легче в дальнейшем вам будет это делать.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

1. Понятие о позиционной задаче. Напомним, что плоскость называется секущей плоскостью многогранника, если по обе стороны от этой плоскости имеются точки многогранника. Сечением многогранника плоскостью называется многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.

На рис. 30 изображена треугольная призма . (На этом проекционном чертеже изображения точек обозначены теми же буквами, что и соответствующие точки-оригиналы). Представим, что нам необходимо отметить точки: а) М , лежащую на ребре ; б) N , лежащую в грани ; в) , лежащую внутри призмы.

Если мы изобразим эти точки так, как это сделано на рисунке а), то лишь про точку М можно условно сказать, что она лежит на ребре . Положение точек N и K по этому рисунку определить нельзя. Рисунок б) уже позволяет заключить, что точка N лежит в грани , а точка –


внутри призмы. За счет чего можно сделать эти выводы? Дело в том, что на втором рисунке мы задали проекции точек N и K на плоскость основания параллельно боковым ребрам призмы. Строго говоря, для того, чтобы быть уверенным, что и точка М лежит на ребре , одних зрительных восприятий также недостаточно. (В проектировании, с помощью которого выполнялось изображение призмы, точка М служит проекцией любой точки прямой, параллельной направлению проектирования и через нее проходящей.)


Если же указать, что при проектировании, параллельном боковым ребрам призмы, точка М проектируется на основание в точку А , то такая уверенность появляется.

Аналогичная ситуация показана на рис. 31. Здесь нужно отметить точки: а) М на боковом ребре SA ; б) N – в грани SАB ;
в) К – внутри пирамиды. Разница заключается в том, что на правом рисунке используется центральное проектирование отмечаемых точек на плоскость основания пирамиды из ее вершины S .

Для того чтобы сделать изображение наглядным, в рассмотренных примерах приходится использовать не одно проектирование, а два. Первое проектирование, с помощью которого выполнено изображение многогранника, называется внешним. Второе проектирование носит вспомогательный характер. Оно связано с самой фигурой, – это, как правило, проектирование на плоскость, содержащую одну из граней многогранника. Мы будем иметь дело только с призмами и пирамидами, а в качестве такой плоскости чаще всего выбирать плоскость их основания. Вспомогательное проектирование называется внутренним. Из рассмотренных примеров видно, что для призмы удобно использовать внутреннее параллельное проектирование, а для пирамиды – центральное.

Пусть F 0 – некоторая фигура в пространстве, которая параллельно проектируется на плоскость p (внешнее проектирование). Для того чтобы изображение фигуры было наглядным, мы выбираем в пространстве некоторую плоскость , отличную от плоскости p , и рассматриваем новое проектирование, параллельное или центральное, точек фигуры F 0 на эту плоскость (внутреннее проектирование).

Рассмотрим в пространстве точку М 0 и ее проекцию на плоскость p 0 ¢ при внутреннем проектировании. Обе эти точки спроектируем на плоскость p . При этом проекция М точки М 0 называется основной (или просто проекцией), а проекция М¢ точки – вторичной.

Если для точки М 0 фигуры F 0 известны ее проекция и вторичная проекция, то по изображению мы можем судить о положении этой точки на оригинале. В этом случае говорят, что точка М 0 , принадлежащая фигуре F 0 , является заданной на проекционном чертеже. Изображение фигуры F 0 , на котором каждая точка фигуры является заданной, называется полным.

На проекционных чертежах часто приходится решать задачи о нахождении пересечения различных фигур. Такие задачи называются позиционными. Если некоторое изображение является полным, то на этом изображении разрешима любая позиционная задача.

В заключение заметим следующее. Если M 0 ¢ , N 0 ¢, K 0 ¢, ... – образы точек M 0 , N 0 , K 0 , ... при внутреннем проектировании, то при внешнем проектировании (параллельном) образы MM¢ , NN ¢, KK ¢, ... параллельных прямых M 0 M 0 ¢, N 0 N 0 ¢, K 0 K 0 ¢, ... на плоскости p также будут параллельными. Если же M 0 ¢, N 0 ¢, K 0 ¢, ... – образы точек M 0 , N 0 , K 0 , ... при внутреннем центральном проектировании с центром S 0 , то образы MM ¢, NN ¢, KK ¢, ... прямых M 0 M 0 ¢, N 0 N 0 ¢, K 0 K 0 ¢, ... при внешнем проектировании пересекаются на плоскости p в одной точке S. Эта точка будет образом точки S 0 .

Среди позиционных задач нас будут интересовать только задачи, связанные с построением сечений многоугольников. Рассмотрим основные методы построения таких сечений. Обычно при решении стереометрических задач образы точек фигуры на проекционном чертеже обозначают теми же буквами, что и соответствующие им точки на фигуре-оригинале. Мы также в дальнейшем будем придерживаться этого правила.

2. Построения сечений, основанные на свойствах параллельных прямых и плоскостей. Данный способ особенно часто используется при построении сечений параллелепипедов. Это объясняется тем, что противоположные грани параллелепипеда параллельны. По теореме о пересечении параллельных плоскостей третьей плоскостью линии пересечения параллельных граней являются параллельными отрезками.

Задача 1. Основанием четырехугольной пирамиды SABCD является параллелограмм. Постройте сечение пирамиды плоскостью, проходящей через точку , лежащую на боковом ребре AS , параллельно диагонали BD основания.

Сколько таких плоскостей можно построить? Какие фигуры могут получаться в сечении?

Решение. В плоскости основания пирамиды проведем произвольную прямую a , параллельную диагонали BD . Через эту прямую и точку проходит плоскость a , и притом единственная. По признаку параллельности прямой и плоскости и, значит, плоскость a является искомой.

В плоскости основания существует бесконечно много прямых, параллельных прямой BD, поэтому существует бесконечно много плоскостей, удовлетворяющих условию задачи.


Вид многоугольника, получающегося в сечении, зависит от числа граней, которые пересекает плоскость a . Так как четырехугольная пирамида имеет пять граней, то в сечении могут получаться треугольники, четырехугольники и пятиугольники.

На рис. 32 показаны различные случаи расположения прямой a относительно параллелограмма ABCD . Очевидно, что в зависимости от этого расположения будет определяться вид многоугольника-сечения.

Слева на рис. 33 рассмотрен случай, когда прямая a 1 пересекает стороны AD , AB в точках M , N соответственно и лежит с точкой в одном полупространстве с границей BSD . Здесь сечением является треугольник MKN.

На правом рисунке показан случай, когда прямая a 3 лежит с точкой по разные стороны от плоскости BSD и пересекает стороны DC , BC основания в точках M , N соответственно. Обозначим через Х точку пересечения прямых AD и a 3 . Так как прямая AD лежит в плоскости грани ASD , то в этой грани лежит и точка Х . С другой стороны, точка Х принадлежит прямой a 3 , лежащей в секущей плоскости. Поэтому прямая будет линией пересечения секущей плоскости и плоскости грани ASD. Это позволяет найти точку R=SD ÇKX . Аналогично, точка позволяет построить вершину T ÎBS искомого сечения. В рассмотренном случае секущая плоскость пересекает все грани пирамиды и сечение является пятиугольником.

Остальные случаи взаимного расположения прямой a и основания пирамиды рассмотрите самостоятельно.

Рассмотрим специальные методы построения сечений.

4. Метод следов. Если секущая плоскость не параллельна грани многогранника, то она пересекает плоскость этой грани по прямой. Прямая, по которой секущая плоскость пересекает плоскость грани многогранника, называется следом секущей плоскости на плоскости этой грани. Один из методов построения сечений многогранников основан на использовании следа секущей плоскости на плоскости одной из его граней. Чаще всего при построении сечений призмы и усеченной пирамиды в качестве такой плоскости выбирается плоскость нижнего основания, а в случае пирамиды – плоскость ее основания.

Рассмотрим построение сечений методом следов на примерах.

Задача 2. Дано изображение четырехугольной призмы ABCDA 1 B 1 C 1 D 1 . Задать три точки, принадлежащие ее различным боковым граням, и построить сечение, проходящее через эти три точки.

Решение. Напомним, что для задания точки на проекционном чертеже необходимо задать ее основную и вторичную проекции. В случае призмы для задания вторичных проекций мы договорились использовать внутреннее параллельное проектирование. Поэтому, чтобы задать точку М , лежащую в грани АВВ 1 А 1 , указываем ее проекцию М 1 на плоскость основания параллельно боковым ребрам призмы. Аналогично задаются точки N и K , лежащие в гранях AD 1 DA 1 , CDD 1 C 1 соответственно (рис. 34). Построим след секущей плоскости на плоскости нижнего основания призмы. Параллельные прямые ММ 1 , лежат в одной плоскости и, значит, в общем случае прямые , пересекаются в некоторой точке Х . Так как прямая лежит в секущей плоскости, а прямая – в плоскости нижнего основания, то точка Х принадлежит следу секущей плоскости на плоскости нижнего основания призмы. Аналогично, точки K , N и их вторичные проекции K 1 , N 1 позволяют найти вторую точку Y , принадлежащую искомому следу.

Прямая АВ , лежащая в грани АВВ 1 А 1 , пересекает след XY в точке Z , поэтому прямая MZ лежит как в плоскости грани АВВ 1 А 1 , так и в секущей плоскости. Отрезок ТР , где T=MZ ÇAA 1 , P=MZ ÇBB 1 , будет стороной многоугольника-сечения. Далее последовательно строим его стороны TR и RQ , проходящие через данные точки N и K соответственно. Наконец, строим сторону PQ .

Задача 3. Дано изображение пятиугольной пирамиды SABCDE. Задать точки N и K , принадлежащие боковым ребрам SC , SD соответственно и точку М , лежащую в грани ASE. Построить сечение, проходящее через заданные точки.

Решение. Для задания точек K , N и М воспользуемся внутренним центральным проектированием с центром в вершине пирамиды. При этом проекциями точек K и N будут точки D и C , а проекцией точки М – точка (рис. 35).

Прямые и , лежащие в плоскости , в общем случае пересекаются в точке Х , лежащей в секущей плоскости. С другой стороны, точка Х лежит в плоскости основания, и, значит, она принадлежит следу секущей плоскости на плоскости основания. Второй точкой искомого следа будет точка . Прямая АЕ , лежащая в грани ASE пирамиды, пересекает след XY в точке Z . Проводя прямую , находим сторону LP многоугольника-сечения. Для того чтобы найти вершину сечения, строим точку , а затем прямую .

5. Метод внутреннего проектирования. Суть этого метода заключается в том, что здесь с помощью внутреннего проектирования точки сечения ищутся по их известным вторичным проекциям. Метод внутреннего проектирования особенно удобно применять в тех случаях, когда след секущей плоскости далеко удален от заданной фигуры. Этот метод незаменим и тогда, когда некоторые из прямых, содержащих стороны основания многогранника, пересекают след за пределами чертежа. Рассмотрим применение метода на примерах.

Задача 4. Дано изображение шестиугольной призмы и трех точек, лежащих в трех боковых гранях, никакие две из которых не являются смежными. Построить сечение призмы плоскостью, проходящей через заданные точки.

Решение. Пусть заданные точки М , L , K лежат в гранях , , , а ,, – их вторичные проекции
(рис. 36).

Найдем точку, в которой секущая плоскость пересекает боковое ребро . Для этого с помощью внутреннего проектирования для точки найдем основную проекцию Х , лежащую в секущей плоскости. Искомая точка Х является точкой пересечения прямой, проходящей через точку Х¢ параллельно боковым ребрам призмы, и прямой ML , лежащей в секущей плоскости. Точка Х позволяет построить вершину , а затем сторону QR сечения. Аналогично, используя точку , строим точку Y , прямую KY и находим вершину Р сечения. Далее строятся стороны PQ и PO сечения.

Оставшиеся построения выполняем в следующей последовательности:

1) строим точку Z¢=AK¢ ÇBD ;

2) находим точку Z (Z ÎPK );

3) проводим прямую OZ и находим вершину S (S ÎDD 1) сечения;

4) последовательно строим стороны SR , ST и TO сечения.

Задача 5. Дано изображение четырехугольной пирамиды и трех точек, лежащих на ее боковых ребрах. Построить сечение, проходящее через заданные точки.

Решение. Пусть SABCD – данная пирамида, а M , N , K – данные точки (рис. 37). Вторичными проекциями точек M , N , K во внутреннем центральном проектировании из вершины S на плоскость основания являются точки A , C и D соответственно. Заметим, что в данной задаче стороны и KN сечения сразу строятся. Остается найти только вершину сечения L , лежащую на боковом ребре SB . Для этого построим точку и «поднимем» ее в секущую плоскость с помощью внутреннего проектирования. Прообразом точки Х¢ при этом центральном проектировании будет точка Х=Х¢S ÇMN. Вершина L , принадлежащая ребру SB , лежит на прямой KX.

6. Комбинированный метод . Суть этого метода заключается в сочетании метода следов или метода внутреннего проектирования с построениями, выполняемыми на основе свойств параллельных прямых и плоскостей.

Рассмотрим следующий пример.

Задача 6. Точка М является серединой ребра AD куба ABCDA 1 B 1 C 1 D 1 . Построить сечение куба плоскостью, проходящей через точку М параллельно диагонали ВD основания и диагонали АВ 1 боковой грани АА 1 В 1 В .

Решение. Секущая плоскость a параллельна диагонали BD основания и проходит через точку М , также лежащую в основании, поэтому она пересекает основание по прямой
(рис. 38).

Прямая l будет следом плоскости a на плоскости нижнего основания куба. Обозначим . След m плоскости a на плоскости грани АВВ 1 А 1 строится аналогично. Этот след проходит через точку N , параллельно АВ 1 . Обозначим .

Можно продолжить построение сечения, не прибегая к специальным методам. Однако мы воспользуемся методом следов. Пусть прямая ВС пересекает след l в точке Х . Точки Х и искомой плоскости a лежат и в плоскости грани ВСС 1 В 1 . Обозначим через L точку пересечения прямой и ребра В 1 С 1 . Далее удобно воспользоваться теоремой о пересечении двух параллельных плоскостей третьей плоскостью. В силу этой теоремы , . Здесь R ÎDD 1 , P ÎC 1 D 1 .

Докажите, что полученный в сечении шестиугольник является правильным.

Изображение окружности

1. Эллипс и его свойства. При изображении цилиндра, конуса и шара (сферы) нам придется вычерчивать эллипсы. Эллипс можно определить различными способами. Приведем определение с помощью сжатия плоскости к прямой.


Эллипсом называется линия, которая является образом окружности при сжатии плоскости к прямой, проходящей через центр окружности (рис. 39).

Если заданы окружность, прямая, проходящая через ее центр, и коэффициент сжатия, с помощью приведенного определения легко построить образ любой точки заданной окружности. Выполнив построение нескольких точек-образов и соединив их плавной линией, можно вычертить эллипс, который является образом окружности.

Oxy так, чтобы ее ось Ox совпала с прямой сжатия l , а начало О было центром окружности w радиуса a (рис. 40). В этой системе координат окружность w определяется уравнением: или

Это значит, что любая точка , координаты которой удовлетворяют уравнению (1), принадлежит окружности w , а точка, координаты которой не удовлетворяют (1) – не принадлежит.

Пусть – коэффициент сжатия, – произвольная точка плоскости, а М 0 – ее проекция на прямую l . При сжатии к точка М переходит в точку такую, что . Так как прямая ММ 1 параллельна оси Oy , то , а проекция М 0 этих точек на прямую сжатия Ox определяется координатами .

Отсюда , . Поэтому формулы сжатия имеют вид

Обратно, формулы (2) определяют сжатие плоскости к оси Ox с коэффициентом сжатия , в котором точка переходит в точку .

Из этих формул , . Подставляя x и y в уравнение (1), получим: . Значит, координаты точки М 1 , являющейся образом точки окружности, удовлетворяют уравнению

где . Это уравнение в системе Oxy определяет эллипс g , который получается при сжатии окружности w к оси Ox . Напомним, что уравнение (3) называется каноническим уравнением эллипса.

Используя каноническое уравнение эллипса, можно изучать его геометрические свойства. Вспомним некоторые понятия, связанные с эллипсом, и его свойства.

Пусть эллипс g задан в прямоугольной системе координат каноническим уравнением (3). Так как x и y входят в это уравнение во второй степени, то можно сделать следующие выводы.

Если , то Îg (рис. 41). Отсюда следует, что начало координат О является центром симметрии эллипса. Центр симметрии эллипса называется его центром .

Если , то , . Отсюда следует, что прямые Ox и Oy являются осями симметрии эллипса. Оси симметрии эллипса называются его осями . Каждая из осей пересекает эллипс в двух точках. Ось Ox имеет уравнение , поэтому из уравнения (3) для абсцисс точек А 1 , А 2 пересечения имеем . Отсюда А 1 (a ;0), А 2 (–a ;0). Аналогично находим, что ось Oy пересекает эллипс в точках В 1 (0;b ) и В 2 (0;–b ). Точки пересечения эллипса с его осями называются вершинами эллипса. Отрезки А 1 А 2 и В 1 В 2 также называются осями эллипса . Центр эллипса О является общей серединой каждого из этих отрезков.



Отрезок, концы которого принадлежат эллипсу,называется хордой этого эллипса. Хорда эллипса, проходящая через его центр, называется диаметром эллипса . Значит, оси эллипса являются его взаимно перпендикулярными диаметрами.

Заметим, что при , имеем . В этом случае A 1 A 2 >B 1 B 2 и отрезки A 1 A 2 , B 1 B 2 называются соответственно большой и малой осями эллипса. При этом числа , называются соответственно большой и малой полуосями эллипса. При , наоборот, . Здесь названия осей меняются соответствующим образом.

Рассмотрим параметрические уравнения эллипса и основанный на них способ построения точек эллипса.

Пусть отрезки А 1 А 2 и В 1 В 2 являются осями эллипса. Построим на них, как на диаметрах, концентрические окружности w 1 и w 2 соответственно (рис. 42). Рассмотрим луч h с началом в точке О . Этот луч пересекает окружности w 1 и w 2 в точках М 1 и М 2 . Через точку М 1 проведем прямую, параллельную малой оси В 1 В 2 , а через точку М 2 – прямую, параллельную большой оси А 1 А 2 . Покажем, что точка М пересечения этих прямых принадлежит эллипсу с заданными осями.

Выберем прямоугольную систему координат Oxy с началом в точке О . Пусть в этой системе точка М имеет координаты (x ;y ). Далее, пусть луч h образует с лучом ОА 1 угол t. Если , то , . Поскольку точки М и М 1 имеют равные абсциссы, а точки М и М 2 – равные ординаты,

Из равенств (4) , , поэтому в силу основного тригонометрического тождества имеем , т.е. построенная точка принадлежит эллипсу с полуосями a и b .

Для любого значения t Î}