Куда расширяется Вселенная? Расширение Вселенной: скорость процесса

Окрашивание

Всего лишь сто лет назад ученые обнаружили, что наше Мироздание стремительно увеличивается в размерах.

Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным

В 1870 году английский математик Уильям Клиффорд пришел к очень глубокой мысли, что пространство может быть искривлено, причем неодинаково в разных точках, и что со временем его кривизна может изменяться. Он даже допускал, что такие изменения как-то связаны с движением материи. Обе эти идеи спустя много лет легли в основу общей теории относительности. Сам Клиффорд до этого не дожил — он умер от туберкулеза в возрасте 34 лет за 11 дней до рождения Альберта Эйнштейна.

Красное смещение

Первые сведения о расширении Вселенной предоставила астроспектрография. В 1886 году английский астроном Уильям Хаггинс заметил, что длины волн звездного света несколько сдвинуты по сравнению с земными спектрами тех же элементов. Исходя из формулы оптической версии эффекта Допплера, выведенной в 1848 году французским физиком Арманом Физо, можно вычислить величину радиальной скорости звезды. Подобные наблюдения позволяют отследить движение космического объекта.


Еще сто лет назад представления о Вселенной базировались на ньютоновской механике и евклидовой геометрии. Даже немногие ученые, такие как Лобачевский и Гаусс, допускавшие (только как гипотезу!) физическую реальность неевклидовой геометрии, считали космическое пространство вечным и неизменным. Из-за расширения Вселенной судить о расстоянии до далеких галактик непросто. Свет, дошедший через 13 млрд лет от галактики A1689-zD1 в 3,35 млрд световых лет от нас (А), «краснеет» и ослабевает по мере преодоления расширяющегося пространства, а сама галактика удаляется (B). Он будет нести информацию о дистанции в красном смещении (13 млрд св. лет), в угловом размере (3,5 млрд св. лет), в интенсивности (263 млрд св. лет), тогда как реальное расстояние составляет 30 млрд св. лет.

Четверть века спустя эту возможность по‑новому использовал сотрудник обсерватории во Флагстаффе в штате Аризона Весто Слайфер, который с 1912 года изучал спектры спиральных туманностей на 24-дюймовом телескопе с хорошим спектрографом. Для получения качественного снимка одну и ту же фотопластинку экспонировали по нескольку ночей, поэтому проект двигался медленно. С сентября по декабрь 1913 года Слайфер занимался туманностью Андромеды и с помощью формулы Допплера-Физо пришел к выводу, что она ежесекундно приближается к Земле на 300 км.

В 1917 году он опубликовал данные о радиальных скоростях 25 туманностей, которые показывали значительную асимметрию их направлений. Только четыре туманности приближались к Солнцу, остальные убегали (и некоторые очень быстро).

Слайфер не стремился к славе и не пропагандировал свои результаты. Поэтому они стали известны в астрономических кругах, лишь когда на них обратил внимание знаменитый британский астрофизик Артур Эддингтон.


В 1924 году он опубликовал монографию по теории относительности, куда включил перечень найденных Слайфером радиальных скоростей 41 туманности. Там присутствовала все та же четверка туманностей с голубым смещением, в то время как у остальных 37 спектральные линии были сдвинуты в красную сторону. Их радиальные скорости варьировали в пределах 150 — 1800 км/с и в среднем в 25 раз превышали известные к тому времени скорости звезд Млечного Пути. Это наводило на мысль, что туманности участвуют в иных движениях, нежели «классические» светила.

Космические острова

В начале 1920-х годов большинство астрономов полагало, что спиральные туманности расположены на периферии Млечного Пути, а за его пределами уже нет ничего, кроме пустого темного пространства. Правда, еще в XVIII веке некоторые ученые видели в туманностях гигантские звездные скопления (Иммануил Кант назвал их островными вселенными). Однако эта гипотеза не пользовалась популярностью, поскольку достоверно определить расстояния до туманностей никак не получалось.

Эту задачу решил Эдвин Хаббл, работавший на 100-дюймовом телескопе-рефлекторе калифорнийской обсерватории Маунт-Вилсон. В 1923—1924 годах он обнаружил, что туманность Андромеды состоит из множества светящихся объектов, среди которых есть переменные звезды семейства цефеид. Тогда уже было известно, что период изменения их видимого блеска связан с абсолютной светимостью, и поэтому цефеиды пригодны для калибровки космических дистанций. С их помощью Хаббл оценил расстояние до Андромеды в 285 000 парсек (по современным данным, оно составляет 800 000 парсек). Диаметр Млечного Пути тогда полагали приблизительно равным 100 000 парсек (в действительности он втрое меньше). Отсюда следовало, что Андромеду и Млечный Путь необходимо считать независимыми звездными скоплениями. Вскоре Хаббл идентифицировал еще две самостоятельные галактики, чем окончательно подтвердил гипотезу «островных вселенных».


Справедливости ради стоит отметить, что за два года до Хаббла расстояние до Андромеды вычислил эстонский астроном Эрнст Опик, чей результат — 450000 парсек — был ближе к правильному. Однако он использовал ряд теоретических соображений, которые не были так же убедительны, как прямые наблюдения Хаббла.

К 1926 году Хаббл провел статистический анализ наблюдений четырех сотен «внегалактических туманностей» (этим термином он пользовался еще долго, избегая называть их галактиками) и предложил формулу, позволяющую связать расстояние до туманности с ее видимой яркостью. Несмотря на огромные погрешности этого метода, новые данные подтверждали, что туманности распределены в пространстве более или менее равномерно и находятся далеко за границами Млечного Пути. Теперь уже не приходилось сомневаться, что космос не замыкается на нашей Галактике и ее ближайших соседях.

Модельеры космоса

Эддингтон заинтересовался результатами Слайфера еще до окончательного выяснения природы спиральных туманностей. К этому времени уже существовала космологическая модель, в определенном смысле предсказывавшая эффект, выявленный Слайфером. Эддингтон много размышлял о ней и, естественно, не упустил случая придать наблюдениям аризонского астронома космологическое звучание.

Современная теоретическая космология началась в 1917 году двумя революционными статьями, представившими модели Вселенной, построенные на основе общей теории относительности. Одну из них написал сам Эйнштейн, другую — голландский астроном Виллем де Ситтер.

Законы Хаббла

Эдвин Хаббл эмпирически выявил примерную пропорциональность красных смещений и галактических дистанций, которую он с помощью формулы Допплера-Физо превратил в пропорциональность между скоростями и расстояниями. Так что мы имеем здесь дело с двумя различными закономерностями.
Хаббл не знал, как они связаны друг с другом, но что об этом говорит сегодняшняя наука?
Как показал еще Леметр, линейная корреляция между космологическими (вызванными расширением Вселенной) красными смещениями и дистанциями отнюдь не абсолютна. На практике она хорошо соблюдается лишь для смещений, меньших 0,1. Так что эмпирический закон Хаббла не точный, а приближенный, да и формула Допплера-Физо справедлива только для небольших смещений спектра.
А вот теоретический закон, связывающий радиальную скорость далеких объектов с расстоянием до них (с коэффициентом пропорциональности в виде параметра Хаббла V=Hd), справедлив для любых красных смещений. Однако фигурирующая в нем скорость V — вовсе не скорость физических сигналов или реальных тел в физическом пространстве. Это скорость возрастания дистанций между галактиками и галактическими скоплениями, которое обусловлено расширением Вселенной. Мы бы смогли ее измерить только в том случае, если были бы в состоянии останавливать расширение Вселенной, мгновенно протягивать мерные ленты между галактиками, считывать расстояния между ними и делить их на промежутки времени между измерениями. Естественно, что законы физики этого не позволяют. Поэтому космологи предпочитают использовать параметр Хаббла H в другой формуле, где фигурирует масштабный фактор Вселенной, который как раз и описывает степень ее расширения в различные космические эпохи (поскольку этот параметр изменяется со временем, его современное значение обозначают H0). Вселенная сейчас расширяется с ускорением, так что величина хаббловского параметра возрастает.
Измеряя космологические красные смещения, мы получаем информацию о степени расширения пространства. Свет галактики, пришедший к нам с космологическим красным смещением z, покинул ее, когда все космологические дистанции были в 1+z раз меньшими, нежели в нашу эпоху. Получить об этой галактике дополнительные сведения, такие как ее нынешняя дистанция или скорость удаления от Млечного Пути, можно лишь с помощью конкретной космологической модели. Например, в модели Эйнштейна — де Ситтера галактика с z = 5 отдаляется от нас со скоростью, равной 1,1 с (скорости света). А вот если сделать распространенную ошибку и просто уравнять V/c и z, то эта скорость окажется впятеро больше световой. Расхождение, как видим, нешуточное.
Зависимость скорости далеких объектов от красного смещения согласно СТО, ОТО (зависит от модели и времени, кривая показывает настоящее время и текущую модель). При малых смещениях зависимость линейная.

Эйнштейн в духе времени считал, что Вселенная как целое статична (он пытался сделать ее еще и бесконечной в пространстве, но не смог найти корректные граничные условия для своих уравнений). В итоге он построил модель замкнутой Вселенной, пространство которой обладает постоянной положительной кривизной (и поэтому она имеет постоянный конечный радиус). Время в этой Вселенной, напротив, течет по‑ньютоновски, в одном направлении и с одинаковой скоростью. Пространство-время этой модели искривлено за счет пространственной компоненты, в то время как временная никак не деформирована. Статичность этого мира обеспечивает специальный «вкладыш» в основное уравнение, препятствующий гравитационному схлопыванию и тем самым действующий как вездесущее антигравитационное поле. Его интенсивность пропорциональна особой константе, которую Эйнштейн назвал универсальной (сейчас ее называют космологической постоянной).


Космологическая модель Леметра, описывающая расширение Вселенной, намного опередила свое время. Вселенная Леметра начинается с Большого взрыва, после которого расширение сначала замедляется, а затем начинает ускоряться.

Эйнштейновская модель позволила вычислить размер Вселенной, общее количество материи и даже значение космологической постоянной. Для этого нужна лишь средняя плотность космического вещества, которую, в принципе, можно определить из наблюдений. Не случайно этой моделью восхищался Эддингтон и использовал на практике Хаббл. Однако ее губит неустойчивость, которую Эйнштейн просто не заметил: при малейшем отклонении радиуса от равновесного значения эйнштейновский мир либо расширяется, либо претерпевает гравитационный коллапс. Поэтому к реальной Вселенной такая модель отношения не имеет.

Пустой мир

Де Ситтер тоже построил, как он сам считал, статичный мир постоянной кривизны, но не положительной, а отрицательной. В нем присутствует эйнштейновская космологическая константа, но зато полностью отсутствует материя. При введении пробных частиц сколь угодно малой массы они разбегаются и уходят в бесконечность. Кроме того, время на периферии вселенной де Ситтера течет медленней, нежели в ее центре. Из-за этого с больших расстояний световые волны приходят с красным смещением, даже если их источник неподвижен относительно наблюдателя. Поэтому в 1920-е годы Эддингтон и другие астрономы задались вопросом: не имеет ли модель де Ситтера чего-нибудь общего с реальностью, отраженной в наблюдениях Слайфера?


Эти подозрения подтвердились, хоть и в ином плане. Статичность вселенной де Ситтера оказалась мнимой, поскольку была связана с неудачным выбором координатной системы. После исправления этой ошибки пространство де Ситтера оказалось плоским, евклидовым, но нестатичным. Благодаря антигравитационной космологической константе оно расширяется, сохраняя при этом нулевую кривизну. Из-за этого расширения длины волн фотонов возрастают, что и влечет за собой предсказанный де Ситтером сдвиг спектральных линий. Стоит отметить, что именно так сегодня объясняют космологическое красное смещение далеких галактик.

От статистики к динамике

История открыто нестатичных космологических теорий начинается с двух работ советского физика Александра Фридмана, опубликованных в немецком журнале Zeitschrift fur Physik в 1922 и 1924 годах. Фридман просчитал модели вселенных с переменной во времени положительной и отрицательной кривизной, которые стали золотым фондом теоретической космологии. Однако современники эти работы почти не заметили (Эйнштейн сначала даже счел первую статью Фридмана математически ошибочной). Сам Фридман полагал, что астрономия еще не обладает арсеналом наблюдений, позволяющим решить, какая из космологических моделей более соответствует реальности, и потому ограничился чистой математикой. Возможно, он действовал бы иначе, если бы ознакомился с результатами Слайфера, однако этого не случилось.


По-другому мыслил крупнейший космолог первой половины XX века Жорж Леметр. На родине, в Бельгии, он защитил диссертацию по математике, а затем в середине 1920-х изучал астрономию — в Кембридже под руководством Эддингтона и в Гарвардcкой обсерватории у Харлоу Шепли (во время пребывания в США, где он подготовил вторую диссертацию в МIT, он познакомился со Слайфером и Хабблом). Еще в 1925 году Леметру впервые удалось показать, что статичность модели де Ситтера мнимая. По возвращении на родину в качестве профессора Лувенского университета Леметр построил первую модель расширяющейся вселенной, обладающую четким астрономическим обоснованием. Без преувеличения, эта работа стала революционным прорывом в науке о космосе.

Вселенская революция

В своей модели Леметр сохранил космологическую константу с эйнштейновским численным значением. Поэтому его вселенная начинается статичным состоянием, но со временем из-за флуктуаций вступает на путь постоянного расширения с возрастающей скоростью. На этой стадии она сохраняет положительную кривизну, которая уменьшается по мере роста радиуса. Леметр включил в состав своей вселенной не только вещество, но и электромагнитное излучение. Этого не сделали ни Эйнштейн, ни де Ситтер, чьи работы были Леметру известны, ни Фридман, о котором он тогда ничего не знал.

Сопутствующие координаты

В космологических вычислениях удобно пользоваться сопутствующими координатными системами, которые расширяются в унисон с расширением Вселенной. В идеализированной модели, где галактики и галактические кластеры не участвуют ни в каких собственных движениях, их сопутствующие координаты не меняются. А вот дистанция между двумя объектами в данный момент времени равна их постоянной дистанции в сопутствующих координатах, умноженной на величину масштабного фактора для этого момента. Такую ситуацию легко проиллюстрировать на надувном глобусе: широта и долгота каждой точки не меняются, а расстояние между любой парой точек увеличивается с ростом радиуса.
Использование сопутствующих координат помогает осознать глубокие различия между космологией расширяющейся Вселенной, специальной теорией относительности и ньютоновской физикой. Так, в ньютоновской механике все движения относительны, и абсолютная неподвижность не имеет физического смысла. Напротив, в космологии неподвижность в сопутствующих координатах абсолютна и в принципе может быть подтверждена наблюдениями. Специальная теория относительности описывает процессы в пространстве-времени, из которого можно с помощью преобразований Лоренца бесконечным числом способов вычленять пространственные и временные компоненты. Космологическое пространство-время, напротив, естественно распадается на искривленное расширяющееся пространство и единое космическое время. При этом скорость разбегания далеких галактик может многократно превышать скорость света.

Леметр еще в США предположил, что красные смещения далеких галактик возникают из-за расширения пространства, которое «растягивает» световые волны. Теперь же он доказал это математически. Он также продемонстрировал, что небольшие (много меньшие единицы) красные смещения пропорциональны расстояниям до источника света, причем коэффициент пропорциональности зависит только от времени и несет информацию о текущем темпе расширения Вселенной. Поскольку из формулы Допплера-Физо следовало, что радиальная скорость галактики пропорциональна красному смещению, Леметр пришел к выводу, что эта скорость также пропорциональна ее удаленности. Проанализировав скорости и дистанции 42 галактик из списка Хаббла и приняв во внимание внутригалактическую скорость Солнца, он установил значения коэффициентов пропорциональности.

Незамеченная работа

Свою работу Леметр опубликовал в 1927 году на французском языке в малочитаемом журнале «Анналы Брюссельского научного общества». Считают, что это послужило основной причиной, из-за которой она поначалу осталась практически незамеченной (даже его учителем Эддингтоном). Правда, осенью того же года Леметр смог обсудить свои выводы с Эйнштейном и узнал от него о результатах Фридмана. У создателя ОТО не было технических возражений, однако он решительно не поверил в физическую реальность леметровской модели (подобно тому, как раньше не принял фридмановские выводы).


Графики Хаббла

Между тем в конце 1920-х годов Хаббл и Хьюмасон выявили линейную корреляцию между расстояниями до 24 галактик и их радиальными скоростями, вычисленными (в основном еще Слайфером) по красным смещениям. Хаббл сделал из этого вывод о прямой пропорциональности радиальной скорости галактики расстоянию до нее. Коэффициент этой пропорциональности сейчас обозначают H0 и называют параметром Хаббла (по последним данным, он немного превышает 70 (км/с)/мегапарсек).

Статья Хаббла с графиком линейной зависимости между галактическими скоростями и дистанциями была опубликована в начале 1929 года. Годом ранее молодой американский математик Хауард Робертсон вслед за Леметром вывел эту зависимость из модели расширяющейся Вселенной, о чем Хаббл, возможно, знал. Однако в его знаменитой статье эта модель ни прямо, ни косвенно не упоминалась. Позднее Хаббл высказывал сомнения, что фигурирующие в его формуле скорости реально описывают движения галактик в космическом пространстве, однако всегда воздерживался от их конкретной интерпретации. Смысл своего открытия он видел в демонстрации пропорциональности галактических расстояний и красных смещений, остальное предоставлял теоретикам. Поэтому при всем уважении к Хабблу считать его первооткрывателем расширения Вселенной нет никаких оснований.


И все-таки она расширяется!

Тем не менее Хаббл подготовил почву для признания расширения Вселенной и модели Леметра. Уже в 1930 году ей воздали должное такие мэтры космологии, как Эддингтон и де Ситтер; немногим позже ученые заметили и по достоинству оценили работы Фридмана. В 1931 году с подачи Эддингтона Леметр перевел на английский свою статью (с небольшими купюрами) для «Ежемесячных известий Королевского астрономического общества». В этом же году Эйнштейн согласился с выводами Леметра, а годом позже совместно с де Ситтером построил модель расширяющейся Вселенной с плоским пространством и искривленным временем. Эта модель из-за своей простоты долгое время была очень популярна среди космологов.

В том же 1931 году Леметр опубликовал краткое (и без всякой математики) описание еще одной модели Вселенной, объединявшей в себе космологию и квантовую механику. В этой модели начальным моментом выступает взрыв первичного атома (Леметр также называл его квантом), породивший и пространство, и время. Поскольку тяготение тормозит расширение новорожденной Вселенной, его скорость уменьшается — не исключено, что почти до нуля. Позднее Леметр ввел в свою модель космологическую постоянную, заставившую Вселенную со временем перейти в устойчивый режим ускоряющегося расширения. Так что он предвосхитил и идею Большого взрыва, и современные космологические модели, учитывающие присутствие темной энергии. А в 1933 году он отождествил космологическую постоянную с плотностью энергии вакуума, о чем до того никто еще не додумался. Просто удивительно, насколько этот ученый, безусловно достойный титула первооткрывателя расширения Вселенной, опередил свое время!

Однажды мы обнаружили, что Вселенная расширяется. После этого следующим научным шагом стало определить скорость или темп этого расширения. Прошло больше 80 лет, но мы до сих пор не договорились по этому вопросу. Глядя на крупнейшие космические масштабы и изучая старейшие сигналы — послесвечение Большого Взрыва и крупномасштабные корреляции галактик — мы получили одно число: 67 км/с/Мпк.

Но глядя на отдельные звезды, галактики, сверхновые и прочие прямые указатели, мы получаем другое число: 74 км/с/Мпк. Неопределенности очень небольшие: ±1 к первому числу и ±2 ко второму числу, и остается статистический шанс меньше 0,1%, что эти числа получится примирить друг с другом. Это противоречие должно было разрешиться уже давно, но упорно держится с тех пор, как впервые было обнаружено расширение Вселенной.

В 1923 году Эдвин Хаббл использовал самый большой в мире телескоп, чтобы поискать новые звезды в других галактиках. Наверное, не стоило бы говорить «галактики», потому что тогда человечество не было уверено в небесных спиралях. Изучая крупнейшую из них — M31, ныне известную как Туманность Андромеды — он увидел первую, а затем вторую и третью новую. Но четвертая появилась в том же месте, что и первая, а это было невозможно, поскольку новые перезаряжаются столетиями или больше. Его новая появилась меньше чем за неделю. Волнуясь, Хаббл зачеркнул первую «N», которую написал, и поверх записал «VAR!». Он понял, что это переменная звезда (variable), и с тех пор появилась физика переменных звезд. Хабблу удалось подсчитать расстояние до Андромеды. Он показал, что она была точно за пределами Млечного Пути и является, очевидно, галактикой. Это было самое прекрасное наблюдение единственной звезды в истории астрономии.



Оригинальная пластинка Эдвина Хаббла, раскрывающая переменную природу звезды в Андромеде.

Хаббл продолжил свою работу, наблюдая за переменными звездами во многих спиральных галактиках. Наряду с их сдвинутыми спектральными линиями, он стал замечать, что чем дальше галактика, тем быстрее она удаляется от нас. Он не только открыл этот закон — известный как закон Хаббла — он был первым, кто измерил скорость расширения: параметр Хаббла. Полученное им число было, впрочем, большим. Очень большим. Настолько большим, что если бы оно было верным, из него следовало бы, что Большой Взрыв произошел всего два миллиарда лет назад. Очевидно, никто бы этому не поверил, поскольку у нас имеются геологические свидетельства того, что одной только Земле больше четырех миллиардов лет.


Композитное изображение западного полушария Земли возрастом в 4 с лишним миллиарда лет.

В 1943 году астроном Вальтер Бааде внимательно наблюдал за переменными звездами за пределами Млечного Пути и заметил нечто невероятно важное: не все переменные цефеиды — тот тип, который Хаббл использовал для определения расширения Вселенной — ведут себя одинаково. Вместо этого их было два разных класса. И внезапно оказалось, что постоянная Хаббла была вовсе не такой большой, как решил Хаббл.


Измерения переменных звезд Вальтера Бааде в Андромеде были важнейшим доказательством существования двух отдельных популяций цефеид и позволили свести параметр Хаббла к более осмысленной величине.

Вместо этого, Вселенная расширялась медленнее, а значит, ей требовалось больше времени, чтобы достичь нынешнего состояния. Впервые Вселенная превзошла Землю по возрасту, и это было хорошим знаком. Со временем, дальнейшие уточнения нарастали, а показатель Хаббла постепенно снижался, тогда как возраст Вселенной продолжал увеличиваться. В конечном счете, возраст даже самых старых звезд утонул в возрасте Вселенной.



Как менялись оценки параметра Хаббла со временем.

На этом история не заканчивается. Знаете, почему космический телескоп Хаббла назвали именно так? Не потому что его назвали в честь Эдвина Хаббла, который обнаружил, что Вселенная расширяется. Скорее, потому что его основной миссией было измерение параметра Хаббла, или скорости, с которой расширяется Вселенная. До запуска телескопа в 1990 году, было два лагеря, выступающих за совершенно разные Вселенные: один под лидерством Аллана Сендиджа и Вселенной со скоростью расширения в 50 км/с/Мпк и возрастом в 16 миллиардов лет; другой под лидерством Жерара де Вокулера и Вселенной с темпом расширения в 100 км/с/Мпк и возрастом под 10 миллиардов лет. Два этих лагеря были уверены, что противоположные лагеря совершают систематические ошибки в своих измерениях, и что нет среднего варианта. Главной научной целью космического телескопа Хаббла было измерение скорости расширения раз и навсегда.

И он ее достиг. 72 ± 8 км/с/Мпк было финальным результатом проекта. Сегодня ошибки или погрешности еще меньше, равно как и напряжение между двумя различными методами. Если посмотреть на Вселенную на самых больших масштабах, на флуктуации космического микроволнового фона и барионные акустические колебания в кластеризации галактик, вы получите число поменьше: 67 км/с/Мпк. Это не самый благоприятный результат, но более высокие значения вполне возможны.

Если взглянуть на прямые измерения отдельных звезд в нашей галактике, а затем на те же классы звезд в других галактиках, а затем на сверхновые сверх того, вы получите большее значение: 74 км/с/Мпк. Но систематическая ошибка в измерениях ближайших звезд, даже ошибка в несколько процентов, могла бы существенно снизить это число даже до самого низкого значения из предложенных. По мере того, как миссия EКА Gaia продолжает производить измерения параллакса с беспрецедентной точностью миллиарда звезд в нашей галактике, это напряжение может разрешиться само по себе.

Сегодня мы знаем скорость расширения Хаббла довольно точно, и два разных метода ее извлечения, похоже, дают противоречивые значения. Прямо сейчас протекает множество различных измерений, каждый лагерь пытается доказать свою правоту и найти ошибки другого. И если история нас чему-либо научила, можно сказать, что мы, во-первых, узнаем что-нибудь новое и любопытное о природе нашей Вселенной, когда этот вопрос разрешится, а во-вторых, этот спор на тему скорости расширения явно не будет последним

(Adam Riess) выполнила рекордно точные измерения постоянной Хаббла. Для этого учёные шесть лет наблюдали звёзды и галактики в одноимённый телескоп.

Как сообщает пресс-релиз NASA, тщательные наблюдения и уникальная методика обработки результатов позволили уменьшить погрешность измерений до 2,3%. Однако это означает, что постоянная Хаббла в ранней Вселенной была не такой, как сейчас. И объяснения этому у учёных пока нет.

Напомним, что постоянная Хаббла связывает расстояние до галактики со скоростью, которую этой галактике придаёт расширение Вселенной. Чтобы измерить эту постоянную, нужно знать скорости нескольких галактик и расстояния до них.

"Вести. Наука" (nauka.vesti.ru) уже рассказывали о том, насколько нетривиальной является проблема измерения расстояний в астрономии. Чтобы "дотянуться с линейкой" до других галактик, авторы использовали целый арсенал методов.

Первым звеном цепочки послужила следующая широко известная методика. Сначала нужно измерить расстояния до нескольких цефеид (это особый класс переменных звёзд). Это будут так называемые калибровочные, или опорные, цефеиды. Зная, как далеко они находятся, астрономы пересчитывают их видимую яркость в светимость (мощность излучения, то есть энергию, выделяемую в единицу времени) и по этим данным устанавливают формулу, связывающую светимость с периодом "мигания". Опорных цефеид нужно как можно больше, чтобы формула была как можно более точной. Но понятно, что их количество ограничено тем, до каких дистанций "дотягиваются" наши методы измерения расстояний.

Имея в руках нужную формулу, учёные используют уже её саму в качестве инструмента определения расстояний до других цефеид (и, следовательно, до содержащих их галактик). Измерив период изменения яркости, они по формуле вычисляют светимость звезды. А потом высчитывают, на каком расстоянии такая светимость даст наблюдаемую в телескоп яркость.

Таким образом, загвоздка в том, чтобы определить расстояния до опорных светил. Для этого Рисс и его команда использовали метод параллакса, о котором мы подробно рассказывали. Вкратце он сводится к тому, что из-за движения Земли по орбите видимое положение светил немного меняется. Зная диаметр земной орбиты, по этим изменениям можно вычислить расстояние до звезды.

Однако сделать это гораздо труднее, чем сказать. Чтобы вычислить параллакс восьми цефеид, авторам пришлось измерить "колебание" звёзд в поле зрения телескопа с амплитудой в одну сотую пикселя. С тем же успехом можно рассматривать песчинку с расстояния в сотни километров.

Для этого учёные разработали уникальный алгоритм, позволивший "Хабблу" измерять положение звезды тысячу раз в минуту, чего при запуске инструмента отнюдь не планировалось.

Измерив таким образом параллакс, астрономы определили расстояния до восьми цефеид и по этим данным установили связь между светимостью и периодом. С помощью выведенной формулы они определили расстояния до 19 галактик, содержащих цефеиды. Затем по вспышкам сверхновых в этих галактиках они уточнили зависимость между яркостью сверхновой и расстоянием до неё. Это позволило измерить дистанцию до большого числа галактик, где в своё время наблюдались сверхновые. Вот какую сложную цепочку приходится выстраивать, когда хочешь дотянуться до звёзд с рулеткой.

Измеренные расстояния позволили астрономам вычислить постоянную Хаббла. Она оказалась равна 73 километрам в секунду на мегапарсек с погрешностью в 2,3%.

Однако это противоречит известным результатам, полученным с помощью орбитального радиотелескопа Planck, изучавшего реликтовое излучение. По этим данным, через 378 тысяч лет после Большого взрыва (произошедшего, напомним, 13 миллиардов лет назад) постоянная Хаббла составляла 67 километров в секунду на мегапарсек. Разница между двумя значениями составляет, таким образом, 9% - огромная величина для измерений такой точности.

Команды "Хаббла" и "Планка" тщательно проверили свои измерения на предмет возможных ошибок и склонны считать, что всё измерено правильно. Но тогда встаёт вопрос, почему в юной Вселенной постоянная Хаббла имела другое значение.

Ответа на него пока нет. Высказываются гипотезы одна другой заманчивее. Возможно, что ускорение, которое тёмная энергия придаёт расширению Вселенной (именно за открытие этого ускорения, кстати, Рисс получил Нобелевскую премию), меняется со временем. Возможно, дело в тёмной материи, которая взаимодействует с обычным веществом интенсивнее, чем предполагают учёные. Наконец, есть версия, что дело в неизвестных науке частицах - "стерильных нейтрино", которые влияют на скорость расширения Вселенной своей гравитацией.

К слову, Вселенная не впервые преподносит космологам сюрпризы. Мы ранее писали о том, как наблюдения поставили под вопрос стандартную модель тёмной материи (и в этом заслуга в том числе и "Хаббла").

Когда астрофизик Эдвин Хаббл почти сто лет назад определил, что Вселенная равномерно расширяется во всех направлениях, это открытие стало настоящим сюрпризом. Потом, в середине 1990-х, выяснилась ещё одна неожиданная вещь: оказывается, Вселенная расширяется всё быстрее, то есть с ускорением. Причиной этого посчитали отталкивающие свойства вещества, названного «тёмной энергией».

Теперь c помощью космического телескопа Хаббла астрофизики НАСА определили, что Вселенная расширяется быстрее, чем ожидалось . Как трактовать это открытие, пока неясно, но постоянную Хаббла придётся пересмотреть.

«Это неожиданное открытие может оказаться важным ключом к пониманию того, что из себя представляет 95% массы Вселенной, которая не излучает свет, в том числе тёмная энергия, тёмная материя и тёмное излучение (dark radiation)», - пояснил ведущий автор исследования и нобелевский лауреат Адам Рисс (Adam Riess) из Института исследований космоса с помощью космического телескопа и университета Джонса Хопкинса.

Так называемое «тёмное излучение», о котором говорит нобелевский лауреат, - вероятно, одна из гипотетических форм тёмной энергии.

Учёные предлагают несколько объяснений происходящему. Возможно, тёмная энергия расталкивает галактики сильнее, чем ожидалось. Или ранний космос может содержать новый тип элементарных частиц, именуемых «тёмным излучением» (dark radiation), то есть в формулу расширения Вселенной после Большого взрыва следует добавить больше энергии от тёмной радиации.

Третий вариант - что тёмная материя, невидимая форма материи, которая составляет большую часть массы нашей Вселенной, обладает некими странными, неожиданными характеристиками. В конце концов, теория гравитации Эйнштейна может быть неполной.

Адам Рисс с коллегами разработали новую технику оценки скорости расширения Вселенной в 2005 году. Инновационная техника позволяет лучше определить расстояние до дальних галактик.

Метод состоит из трёх шагов, которые показаны на схеме. Он предусматривает поиск галактик со сверхновыми типа Ia и звёздами цефеидами. Цифеиды пульсируют в точной зависимости от своей инстинной светимости, что можно сравнить с их видимой светимостью для точной оценки расстояния. Сверхновые класса типа Ia, в свою очередь, образуются в результате взрывов белых карликов и достаточно ярки для наблюдения с относительно большого расстояния.

За десять лет учёные измерили примерно 2400 цефеид в 19 галактиках, оценили их видимую яркость, точно измерили истинную яркость и рассчитали расстояние примерно до 300 сверхновых типа Iа в дальних галактиках.

До настоящего времени наиболее надёжная оценка постоянной Хаббла составляла 67,80 ± 0,77 (км/с)/Мпк, то есть в современную эпоху две галактики, разделённые расстоянием в 1 мегапарсек, в среднем разлетаются со скоростью ~68 км/с.

Согласно новым измерениям, постоянная Хаббла составляет 73,2 (км/с)/Мпк, то есть две галактики, разделённые расстоянием в 1 мегапарсек, в среднем разлетаются со скоростью ~73 км/с.

Предложенный способ более точный, чем предыдущие методы: скорость расширения определяется с погрешностью 2,4%. Но даже с учётом этой погрешности новая постоянная Хаббла существенно больше, чем старая.

Результаты десятилетнего исследования будут опубликованы в ближайшем номере The Astrophysical Journal .

Расчёт истинного значения постоянной Хаббла - непростая задача. Например, анализ послесвечения от Большого взрыва, проведённый аппаратом Wilkinson Microwave Anisotropy Probe (WMAP) и результаты наблюдений спутниковой миссией Planck Европейского космического агентства дали противоположные результаты: по предсказанной траектории, скорость расширения Вселенной сейчас должна быть на 5% и 9% меньше, чем полученное значение постоянной Хаббла.

Дальнейшие исследования помогут внести ясность и измерить скорость удаления галактик более точно в разные периоды времени.

«Мы настолько мало знаем о тёмных частях Вселенной, что очень важно измерить, с какой силой они притягивались и отталкивались на протяжении космической истории», - сказал Лукас Макри (Lucas Macri), один из авторов научной работы.

До запуска телескопа Хаббла оценки скорости расширения Вселенной отличались на два порядка. Измерения в конце 1990-х помогли уменьшить погрешность до 10%. Сейчас учёные из группы Supernova H0 for the Equation of State (SH0ES) работают над новыми методами расчёта, которые снизят погрешность до 1%.

Мироздание не статично. Это подтвердили исследования астронома Эдвина Хаббла еще в 1929 году, то есть почти 90 лет назад. На эту мысль его навели наблюдения за движением галактик. Еще одним открытием астрофизиков в завершение двадцатого века стало вычисление расширения Вселенной с ускорением.

Как называют расширение Вселенной

Некоторые удивляются, услышав, как ученые называют расширение Вселенной. Это наименование у большинства связано с экономикой, причем с негативными ожиданиями.

Инфляция - это процесс расширения Вселенной сразу после её появления, причем с резким ускорением. В переводе с английского «инфляция» - «накачивать», «раздувать».

Новые сомнения о существовании темной энергии как фактора теории инфляции Вселенной используют противники теории расширения.

Тогда ученые предложили карту черных дыр. Первоначальные данные отличаются от тех, что были получены на позднем этапе:

  1. Шестьдесят тысяч черных дыр с расстоянием между самыми дальними больше одиннадцати миллионов световых лет - данные четырехлетней давности.
  2. Сто восемьдесят тысяч галактик с черными дырами с удалением в тринадцать миллионов световых лет. Данные, полученные учеными, в том числе российскими ядерными физиками, в начале 2017 года.

Эти сведения, говорят астрофизики, не противоречат классической модели Вселенной.

Скорость расширения Вселенной - задача для космологов

Скорость расширения действительно является задачей для космологов и астрономов. Правда, о том, что скорость расширения Вселенной не имеет постоянного параметра, космологи больше не спорят, расхождения перешли в другую плоскость - когда расширение начало ускоряться. Данные о кочевании в спектре очень далеких сверхновых галактик первого типа доказывают, что расширение - это не внезапно наступивший процесс.

Ученые считают, что первые пять миллиардов лет Вселенная сужалась.

Первые последствия Большого Взрыва сначала спровоцировали мощное расширение, а потом началось сжатие. Но темная энергия все-таки повлияла на рост мироздания. Причем с ускорением.

Американские ученые приступили к созданию карты размеров Вселенной для разных эпох, чтобы выяснить, когда началось ускорение. Наблюдая взрывы сверхновых, а также направление концентрации в древних галактиках, космологи заметили особенности ускорения.

Почему Вселенная «разгоняется»

Изначально подразумевалось, что в составленной карте значения ускорения не были линейны, а превратились в синусоиду. Ее назвали «волной Вселенной».

Волна Вселенной говорит о том, что ускорение не шло с постоянной скоростью: оно то замедлялось, то ускорялось. Причем несколько раз. Ученые считают, что было семь таких процессов за 13,81 миллиарда лет после Большого Взрыва.

Однако космологи пока не могут ответить на вопрос о том, от чего зависит ускорение-замедление. Предположения сводятся к мысли, что энергетическое поле, от которого берет начало темная энергия, подчинено волне Вселенной. И, переходя от одного положения к другому, Вселенная то расширяет ускорение, то замедляет его.

Несмотря на убедительность доводов, они все-таки остаются пока теорией. Астрофизики надеются, что информация орбитального телескопа «Планк» подтвердит существование волны Вселенной.

Когда нашли темную энергию

Впервые о ней заговорили в девяностые из-за взрывов сверхновых. Природа темной энергии неизвестна. Хотя еще Альберт Эйнштейн выделил космическую постоянную в своей теории относительности.

В 1916 году, сто лет назад, Вселенная еще считалась неизменной. Но сила притяжения вмешалась: космические массы неизменно бы ударились друг от друга, если бы Вселенная была недвижима. Эйнштейн объявляет гравитацию за счет космической силы отталкивания.

Жорж Леметр обоснует это через физику. Вакуум содержит энергию. Из-за её колебаний, приводящих к появлению частиц и дальнейшего их разрушения, энергия приобретает силу отталкивания.

Когда Хаббл доказал расширение Вселенной, Эйнштейн назвал чушью.

Влияние темной энергии

Мироздание раздвигается с постоянной скоростью. В 1998 году миру представили данные анализа вспышек сверхновых первого типа. Было доказано, что Вселенная разрастается все быстрее.

Происходит это из-за непознанного вещества, её прозвали «темной энергией». Выяснится, что она занимает почти 70 % пространства Вселенной. Суть, свойства и природа темной энергии не изучены, но её ученые пытаются выяснить, имелась ли она в других галактиках.

В 2016 году вычислили точную скорость расширения на ближайшее будущее, но появилось несовпадение: Вселенная расширяется с большей скоростью, чем ранее предположили астрофизики. В среде ученых разгорелись споры о существовании темной энергии и её влиянии на скорость расширения пределов мироздания.

Расширение Вселенной происходит без темной энергии

Теорию независимости процесса расширения Вселенной от темной энергии выдвинули ученые в начале 2017 года. Расширение они объясняют изменением структуры Вселенной.

Ученые из Будапештского и Гавайского университетов пришли к выводу, что несовпадение расчетов и реальной скорости расширения связаны с изменением свойств пространства. Никто не учитывал, что происходит с моделью Вселенной при расширении.

Усомнившись в существовании темной энергии, ученые объясняют: самые большие концентраты материи Вселенной влияют на её расширение. При этом остальное содержание распределяется равномерно. Однако факт остается неучтенным.

Для демонстрации обоснованности своих предположений ученые предложили модель мини-Вселенной. Они представили её в форме набора пузырьков и начали просчет параметров роста каждого пузырька с собственной скоростью, зависящей от его массы.

Такое моделирование Вселенной показало ученым, что она может изменяться без учета энергии. А если «примешать» темную энергию, то модель не изменится, считают ученые.

В общем-то, споры все еще продолжаются. Сторонники темной энергии говорят, что она влияет на расширение границ Вселенной, противники стоят на своем, утверждая, что значение имеет концентрация материи.

Скорость расширения Вселенной сейчас

Ученые убеждены, что расти Вселенная начала после Большого Взрыва. Тогда, почти четырнадцать миллиардов лет назад, оказалось, что скорость расширения Вселенной больше скорости света. И она продолжает расти.

В книге Стивена Хокинга и Леонарда Млодинова «Кратчайшая история времени» отмечается, что скорость расширения границ Вселенной не может превышать 10 % за миллиард лет.

Чтобы определить, какова скорость расширения Вселенной, летом 2016 года лауреат Нобелевской премии Адам Рисс рассчитал расстояние до пульсирующих цефеид в близких друг к другу галактиках. Эти данные позволили вычислить скорость. Выяснилось, что галактики на расстоянии не меньше трех миллионов световых лет могут отдаляться со скоростью почти 73 км/с.

Результат был удивителен: орбитальные телескопы, тот же «Планк», говорили о 69 км/с. Почему зафиксирована такая разница, ученые не в силах дать ответ: им ничего не известно о происхождении темной материи, на которую опирается теория расширения Вселенной.

Темная радиация

Еще один фактор «разгона» Вселенной обнаружили астрономы с помощью «Хаббла». Темное излучение, как предполагают, появилось в самом начале образования Вселенной. Тогда больше в ней было энергии, а не материи.

Темное излучение «помогло» темной энергии расширить границы Вселенной. Расхождения в определении скорости ускорения были из-за неизвестности этого излучения, считают ученые.

Дальнейшая работа «Хаббла» должна сделать наблюдения более точными.

Таинственная энергия может уничтожить Вселенную

Такой сценарий ученые рассматривают уже несколько десятилетий, данные космической обсерватории «Планк» говорят, что это далеко не только предположения. Их опубликовали в 2013 году.

«Планк» замерил «эхо» Большого взрыва, появившееся в возрасте Вселенной около 380 тысяч лет, температура составила 2 700 градусов. Причем температура менялась. «Планк» определил и «состав» Вселенной:

  • почти 5 % - звезды, космическая пыль, космический газ, галактики;
  • почти 27 % - масса темной материи;
  • около 70 % - темная энергия.

Физик Роберт Колдуэл предположил, что темная энергия обладает силой, способной нарастать. И эта энергия разъединит пространство-время. Галактика будет отдаляться в ближайшие двадцать-пятьдесят миллиардов лет, считает ученый. Этот процесс будет происходить при нарастающем расширении границ Вселенной. Это оторвет Млечный Путь от звезды, и он тоже распадется.

Космосу отмерили около шестидесяти миллионов лет. Солнце станет карликовой гаснущей звездой, и от нее отделятся планеты. После взорвется Земля. В следующие тридцать минут пространство разорвет атомы. Финалом станет разрушение структуры пространство-время.

Куда «улетает» Млечный Путь

Иерусалимские астрономы убеждены, что Млечный Путь набрал максимальную скорость, которая выше скорости расширения Вселенной. Ученые объясняют это стремлением Млечного Пути к «Великому Аттрактору», считающемуся самым крупным Так Млечный Путь уходит из космической пустыни.

Ученые используют разные методики измерения скорости расширения Вселенной, поэтому нет единого результата этого параметра.